DEELT - Departamento de Engenharia Elétrica
Permanent URI for this community
Browse
Browsing DEELT - Departamento de Engenharia Elétrica by Author "Barbosa, Carlos Henrique Nogueira de Resende"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Distribution network reconfiguration using iterative branch exchange and clustering technique.(2023) Pereira, Ezequiel C.; Barbosa, Carlos Henrique Nogueira de Resende; Vasconcelos, João Antônio deThe distribution network reconfiguration problem (DNRP) refers to the challenge of searching for a given power distribution network configuration with better operating conditions, such as minimized energy losses and improved voltage levels. To accomplish that, this paper revisits the branch exchange heuristics and presents a method in which it is coupled with other techniques such as evolutionary metaheuristics and cluster analysis. The methodology is applied to four benchmark networks, the 33-, 70-, 84-, and 136-bus networks, and the results are compared with those available in the literature, using the criteria of the number of power flow executions. The methodology minimized the four systems starting from the initial configuration of the network. The main contributions of this work are the use of clustering techniques to reduce the search space of the DNRP; the consideration of voltage regulation banks and voltage-dependent loads in the feeder, requiring the addition of a constraint to the mono-objective model to guarantee the transferred load will be supplied at the best voltage magnitude level, and the application of the methodology in real distribution networks to solve a set of 81 real DNRPs from CEMIG-D (the distribution branch of the Energy Company of Minas Gerais). Four out of those are presented as case studies to demonstrate the applicability of the approach, which efficiently found configurations with lower power and energy losses with few PF runs.Item LONSA : a labeling-oriented non-dominated sorting algorithm for evolutionary many-objective optimization.(2018) Alexandre, Rafael Frederico; Barbosa, Carlos Henrique Nogueira de Resende; Vasconcelos, João Antônio deMultiobjective algorithms are powerful in tackling complex optmization problems mathematically represented by two or more conflicting objective functions and their constraints. Sorting a set of current solutions across non-dominated fronts is the key step for the searching process to finally identify which ones are the best solutions. To perform that step, a high computational effort is demanded, especially if the size of the solution set is huge or the mathematical model corresponds to a many-objective problem. In order to overcome this, a new labeling-oriented algorithm is proposed in this paper to speed up the solution-to-front assignment by avoiding usual dominance tests. Along with this algorithm, called Labeling-Oriented Non-dominated Sorting Algorithm (LONSA), the associated methodology is carefully detailed to clearly explain how the classification of the solution set is successfully achieved. This work presents a comparison between LONSA and other well-known algorithms usually found in the literature. The simulation results have shown a better performance of the proposed algorithm against nine chosen strategies in terms of computational time as well as number of comparisons.