Browsing by Author "Arena, Karine da Rosa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Geochemistry and δ11B evolution of tourmaline from tourmalinite as a record of oceanic crust in the Tonian Ibaré ophiolite, southern Brasiliano Orogen.(2020) Arena, Karine da Rosa; Hartmann, Leo Afraneo; Lana, Cristiano de Carvalho; Queiroga, Gláucia Nascimento; Castro, Marco Paulo deThe isotopic and geochemical evolution of tourmaline constrain the processes of paleo-oceanic lithosphere in ophiolites. The Brasiliano Orogen is a major structure of South America and requires characterization for the understanding of Gondwana supercontinent evolution. We made a pioneering investigation of tourmaline from a tourmalinite in the Ibaré ophiolite by integrating fi eld work with chemical analyses of tourmaline by electron microprobe (EPMA) and δ11B determinations via laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). Remarkably massive tourmalinite (>90 vol.% tourmaline, some chlorite) enclosed in serpentinite has homogeneous dravite in chemical and isotopic composition (δ11B = +3.5 to +5.2‰). These results indicate a geotectonic environment in the altered oceanic crust for the origin of the tourmalinite. This fi rst δ11B characterization of tourmaline from tourmalinite sets limits to the evolution of the Neoproterozoic to Cambrian Brasiliano Orogen and Gondwana evolution.Item Proto-Adamastor ocean crust (920 Ma) described in Brasiliano Orogen from coetaneous zircon and tourmaline.(2018) Hartmann, Leo Afraneo; Werle, Mariana; Michelin, Cassiana Roberta Lizzoni; Lana, Cristiano de Carvalho; Queiroga, Gláucia Nascimento; Castro, Marco Paulo de; Arena, Karine da RosaProto-Adamastor ocean bathed Rodinia and successor continental fragments from 1.0e0.9 Ga up to 0.75 Ga, and evolved into world Adamastor Ocean at 0.75e0.60 Ga. Mesoproterozoic oceanic crust is poorly preserved on continents, only indirect evidence registered in Brasiliano Orogen. We report first evidence of ophiolite originated in proto-Adamastor. We use multi-technique U-Pb-Hf zircon and d11B tourmaline isotopic and elemental compositions. The host tourmalinite is enclosed in metaserpentinite, both belonging to the Bossoroca ophiolite. Zircon is 920 Ma-old, 3 Hf(920 Ma)¼þ12, HfTDM ¼ 1.0 Ga and has ‘oceanic’ composition (e.g., U/Yb < 0.1). Tourmaline is dravite with d11B ¼ þ1.8& (Tur 1), 0& (Tur 2), 8.5& (Tur 3). These characteristics are a novel contribution to Rodinia and associated world ocean, because a fragment of proto-Adamastor oceanic crust and mantle evolved at the beginning of the Brasiliano Orogen.Item U-Pb geochronology of Paraná volcanics combined with trace element geochemistry of the zircon crystals and zircon Hf isotope data.(2019) Hartmann, Leo Afraneo; Baggio, Sergio Benjamin; Brückmann, Matheus Philipe; Knijnik, Daniel Barbosa; Lana, Cristiano de Carvalho; Massonne, Hans-Joachim; Opitz, Joachim; Pinto, Viter Magalhães; Sato, Kei; Tassinari, Colombo Celso Gaeta; Arena, Karine da RosaThe Paraná volcanic province is a window into mantle and crustal processes in the Cretaceous. The variability and complexity of this province can be determined through the study of minerals. An integrated study of zircon from Paraná lavas (one high-Ti basalt, one low-Ti andesite, one high-Ti rhyodacite and one high-Ti andesite sill) was achieved using backscattered electron imaging, sensitive high resolution ion microprobe (SHRIMP-IIe) for U-Pb geochronology, and laser ablation inductively coupled mass spectrometer (LA-ICPMS) to determine the Lu- Hf isotopes and the trace-element compositions. U-Pb-Hf and trace-element data indicate that zircon crystallized from the magma at approximately 134 Ma. This South American large igneous province originated from the mantle and was contaminated by crust either in the mantle or during ascent and crystallization of magma. Contaminant continental crust had Precambrian age. Trace elements point to a new compositional field for zircon, different from other types of provinces. Examination of volcanic zircon improves our understanding of age and contamination of the Paraná volcanics.