Browsing by Author "Cruz, Breno Arcanjo Fernandes da"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aplicações dos números complexos à geometria analítica plana.(2019) Cruz, Breno Arcanjo Fernandes da; Souza, Gil Fidelix de; Ferreira, Geraldo César Gonçalves; Souza, Gil Fidelix de; Ferreira, Geraldo César Gonçalves; Hoyos, Mariana Garabini Cornelissen; Couto, Rodrigo Geraldo do; Silva, Wanderson Costa eA proposta deste trabalho e fazer uso da boa estrutura do conjunto dos números complexos, essencialmente de sua geometria, para promover o estudo de objetos e a obtenção de resultados da Geometria Analítica Plana. A boa estrutura do conjunto dos números complexos permite o estudo de resultados clássicos, por exemplo os Teoremas de Ceva, Menelaus e Desargues. O primeiro Teorema estabelece condições necessárias e suficientes para que três cevianas sejam concorrentes, o segundo resultado estabelece condições para a colinearidade de um conjunto de pontos ou para a concorrência de um conjunto de segmentos e o terceiro resultado refere-se a triângulos projetivos e pode ser visto como uma consequência dos dois primeiros resultados.Item Demonstrações dos teoremas de Ceva, Menelaus e Desargues no Plano de Argand-Gauss.(2022) Cruz, Breno Arcanjo Fernandes da; Souza, Gil Fidelix de; Ferreira, Geraldo César GonçalvesNeste trabalho fazemos uso da boa estrutura do conjunto dos números complexos, essencialmente de sua geometria, para promover o estudo de objetos e a obtenção de resultados da Geometria Plana. A boa estrutura do conjunto dos números complexos permite o estudo de resultados clássicos, por exemplo, os Teoremas de Ceva, Menelaus e Desargues. O primeiro Teorema estabelece condições necessárias e suficientes para que três cevianas sejam concorrentes, o segundo estabelece condições de colinearidade para um conjunto de pontos, ou para a concorrência de um conjunto de segmentos e o terceiro refere-se a triângulos projetivos e pode ser visto como uma consequência do primeiro resultado.