Browsing by Author "Facincani, Agda Paula"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Analyses of seven new genomes of Xanthomonas citri pv. aurantifolii strains, causative agents of Citrus Canker B and C, show a reduced repertoire of pathogenicity-related genes.(2019) Fonseca, Natasha Peixoto; Patané, José Salvatore Leister; Varani, Alessandro de Mello; Felestrino, Érica Barbosa; Caneschi, Washington Luiz; Sanchez, Angelica Bianchini; Assis, Renata de Almeida Barbosa; Garcia, Camila Carrião Machado; Belasque Junior, José; Martins Junior, Joaquim; Facincani, Agda PaulaXanthomonas citri pv. aurantifolii pathotype B (XauB) and pathotype C (XauC) are the causative agents respectively of citrus canker B and C, diseases of citrus plants related to the better-known citrus canker A, caused by Xanthomonas citri pv. citri. The study of the genomes of strains of these related bacterial species has the potential to bring new understanding to the molecular basis of citrus canker as well as their evolutionary history. Up to now only one genome sequence of XauB and only one genome sequence of XauC have been available, both in draft status. Here we present two new genome sequences of XauB (both complete) and five new genome sequences of XauC (two complete). A phylogenomic analysis of these seven genome sequences along with 24 other related Xanthomonas genomes showed that there are two distinct and wellsupported major clades, the XauB and XauC clade and the Xanthomonas citri pv. citri clade. An analysis of 62 Type III Secretion System effector genes showed that there are 42 effectors with variable presence/absence or pseudogene status among the 31 genomes analyzed. A comparative analysis of secretion-system and surfacestructure genes showed that the XauB and XauC genomes lack several key genes in pathogenicity-related subsystems. These subsystems, the Types I and IV Secretion Systems, and the Type IV pilus, therefore emerge as important ones in helping explain the aggressiveness of the A type of citrus canker and the apparent dominance in the field of the corresponding strain over the B and C strains.Item Comparative proteomic analysis reveals that T3SS, Tfp, and xanthan gum are key factors in initial stages of Citrus sinensis infection by Xanthomonas citri subsp. citri.(2013) Facincani, Agda Paula; Moreira, Leandro Marcio; Soares, Márcia Regina; Ferreira, Cristiano Barbalho; Ferreira, Rafael Marini; Ferro, Maria Inês Tiraboschi; Ferro, Jesus Aparecido; Gozzo, Fabio Cesar; Oliveira, Julio Cezar Franco deThe bacteria Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. The disease symptoms are characterized by localized host cell hyperplasia followed by tissue necrosis at the infected area. An arsenal of bacterial pathogenicity- and virulence-related proteins is expressed to ensure a successful infection process. At the post-genomic stage of Xac, we used a proteomic approach to analyze the proteins that are displayed differentially over time when the pathogen attacks the host plant. Protein extracts were prepared from infectious Xac grown in inducing medium (XAM1) for 24 h or from host citrus plants for 3 or 5 days after infection, detached times to evaluate the adaptation and virulence of the pathogen. The protein extracts were proteolyzed, and the peptides derived from tryptic digestion were investigated using liquid chromatography and tandem mass spectrometry. Changes in the protein expression profile were compared with the Xac genome and the proteome recently described under non-infectious conditions. An analysis of the proteome of Xac under infectious conditions revealed proteins directly involved in virulence such as the type III secretion system (T3SS) and effector proteins (T3SS-e), the type IV pilus (Tfp), and xanthan gum biosynthesis. Moreover, four new mutants related to proteins detected in the proteome and with different functions exhibited reduced virulence relative to the wild-type proteins. The results of the proteome analysis of infectious Xac define the processes of adaptation to the host and demonstrate the induction of the virulence factors of Xac involved in plant–pathogen interactions.Item Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii.(2010) Moreira, Leandro Marcio; Almeida Junior, Nalvo Franco de; Potnis, Neha; Digiampietri, Luciano Antonio; Adi, Said Sadique; Bortolossi, Julio Cesar; Silva, Ana C.; Silva, Aline M. da; Moraes, Fabrício E. de; Oliveira, Julio Cezar Franco de; Souza, Robson Francisco de; Facincani, Agda Paula; Ferraz, André L.; Ferro, Maria Inês Tiraboschi; Furlan, Luiz Roberto; Gimenez, Daniele F.; Jones, Jeffrey B.; Kitajima, Elliot Watanabe; Laia, Marcelo Luiz de; Leite Junior, Rui P.; Nishyama, Milton Yutaka; Rodrigues Neto, Julio; Nociti, Letícia A.; Norman, David J.; Ostroski, Eric Hainer; Pereira Junior, Haroldo Alves; Staskawicz, Brian J.; Tezza, Renata Izabel; Ferro, Jesus Aparecido; Vinatzer, Boris A.; Setubal, João CarlosBackground: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.Item Origin and diversification of Xanthomonas citri subsp. citri pathotypes revealed by inclusive phylogenomic, dating, and biogeographic analyses.(2019) Patané, José Salvatore Leister; Martins Junior, Joaquim; Rangel, Luiz Thiberio; Belasque Junior, José; Digiampietri, Luciano Antonio; Facincani, Agda Paula; Ferreira, Rafael Marini; Jaciani, Fabrício José; Zhang, Yunzeng; Varani, Alessandro de Mello; Almeida Junior, Nalvo Franco de; Wang, Nian; Ferro, Jesus Aparecido; Moreira, Leandro Marcio; Setubal, João CarlosXanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. Results: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. Conclusions: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.Item Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection.(2017) Moreira, Leandro Marcio; Silva, Marcia Regina Soares da; Facincani, Agda Paula; Ferreira, Cristiano Barbalho; Ferreira, Rafael Marini; Ferro, Maria Inês Tiraboschi; Gozzo, Fabio Cesar; Felestrino, Érica Barbosa; Assis, Renata de Almeida Barbosa; Garcia, Camila Carrião Machado; Setubal, João Carlos; Ferro, Jesus Aparecido; Oliveira, Julio Cezar Franco deBackground: Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. Results: For that, a 2D–based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. Conclusions: This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.