Browsing by Author "Facon, Jacques"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Fast hue-preserving histogram equalization methods for color image contrast enhancement.(2012) Gomes, David Menotti; Najman, Laurent; Facon, Jacques; Araújo, Arnaldo de AlbuquerqueIn this work, we formalize a generic fast hue-preserving histogram equalization method based on the RGB color space for image contrast enhancement and two versions of that generic process. The first method estimates a RGB 3D histogram to be equalized using R-red, G-green, and B-blue 1D histograms, while the second method employs RG, RB, and GB 2D histograms. The histogram equalization is performed using shift hue-preserving transformations, avoiding unrealistic colors. Our methods have linear time and space complexities with respect to the size of the image and do not need to apply conversions from a color space to another in order to perform the image enhancement. Such design complies with real-time applications requirements. An objective assessment comparing our methods and others is performed using a contrast measure and a color image quality measure, where the quality is established as a weighting of the naturalness and colorfulness indexes. We analyze 300 images from the dataset of the University of Berkeley. Experiments show that the value of the image contrast produced by our methods is in average 50% greater than the original image value, keeping the quality of the produced images close to the original one.Item Multi-histogram equalization methods for contrast enhancement and brightness preserving.(2007) Menotti, David; Najman, Laurent; Facon, Jacques; Araújo, Arnaldo de AlbuquerqueHistogram equalization (HE) has proved to be a simple and effective image contrast enhancement technique. However, it tends to change the mean brightness of the image to the middle level of the gray-level range, which is not desirable in the case of images from consumer electronics products. In the latter case, preserving the input brightness of the image is required to avoid the generation of non-existing artifacts in the output image. To surmount this drawback, Bi- HE methods for brightness preserving and contrast enhancement have been proposed. Although these methods preserve the input brightness on the output image with a significant contrast enhancement, they may produce images with do not look as natural as the input ones. In order to overcome this drawback, this work proposes a novel technique called Multi-HE, which consists of decomposing the input image into several sub-images, and then applying the classical HE process to each one. This methodology performs a less intensive image contrast enhancement, in a way that the output image presents a more natural look. We propose two discrepancy functions for image decomposing, conceiving two new Multi-HE methods. A cost function is also used for automatically deciding in how many sub-images the input image will be decomposed on. Experiments show that our methods preserve more the brightness and produce more natural looking images than the other HE methods.Item Proposta e avaliação de um sistema automático para identificação de veículos.(2013) Oliveira Neto, Vantuil José de; Menotti, David; Menotti, David; Cámara Chávez, Guillermo; Bianchi, Andrea Gomes Campos; Facon, Jacques; Guimarães, Silvio Jamil Ferzoli; Santos, Haroldo GambiniSistemas automáticos de identificação de veículos têm como objetivo a identificação de automóveis por meio de suas placas. A maioria dos trabalhos relatados na literatura científica utilizam imagens únicas de um veículo, em geral capturadas sob condições de iluminação e distância controladas, utilizando em muitos casos um gatilho que informa ao sistema qual o momento em que a imagem deve ser processada pelo sistema. Nosso sistema parte de uma abordagem diferente: a localização e o rastreamento dos veículos ao longo da cena. Com esta abordagem o uso do gatilho é dispensado, a área para localização da placa é diminuída devido ao rastreamento do veículo e a quantidade de quadros disponíveis para um mesmo veículo é aumentada. Construímos uma base de vídeos com 1061 veículos divididos em 23 vídeos diferentes, capturados em quatro pontos distintos no acesso principal da nossa universidade. O sistema foi desenvolvido utilizando C++ e OpenCv, e constituído de 6 módulos: localização de movimento, rastreamento de veículos, seleção do melhor frame, localização da placa, segmentação dos caracteres e reconhecimento; cada um dos módulos foi construído independentemente, permitindo assim que trabalhos futuros alterem apenas um destes módulos, dando mais flexibilidade a trabalhos futuros. O sistema funciona em tempo real, processando o vídeo em menos tempo do que o tempo total do vídeo. Em nossa base, o sistema foi capaz de identificar perfeitamente apenas 27,7% dos veículos, no entanto de reconhecer 54,7% dos caracteres rotulados. Em pontos de referência mais adequados, atingimos 65,8% e 65,03% de reconhecimento de caracteres, com 71,11% e 70,30% de identificação de veículos com quatro ou mais dígitos da placa corretamente reconhecidos. Embora o sistema não apresente resultados promissores nos vídeos avaliados, ele abre espaço para que diferentes métodos e abordagens encapsulados em módulos do sistema possam ser facilmente avaliados.