Browsing by Author "Medeiros, Aldo Henrique de Souza"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pohozaev-type identities for a pseudo-relativistic schrodinger operator and applications.(2019) Bueno, Hamilton Prado; Pereira, Gilberto de Assis; Medeiros, Aldo Henrique de SouzaIn this paper we prove a Pohozaev-type identity for both the prob- lem (−∆ + m2 ) su = f(u) in RN and its harmonic extension to R N+1 + when 0 < s < 1. So, our setting includes the pseudo-relativistic operator √ −∆ + m2 and the results showed here are original, to the best of our knowledge. The identity is first obtained in the extension setting and then “translated” into the original problem. In order to do that, we develop a specific Fourier trans- form theory for the fractionary operator (−∆ + m2 ) s , which lead us to define a weak solution u of the original problem if the identity (S) Z RN (−∆ + m2 ) s/2u(−∆ + m2 ) s/2 vdx = Z RN f(u)vdx is satisfied by all v ∈ Hs (RN ). The obtained Pohozaev-type identity is then applied to prove both a result of nonexistence of solution to the case f(u) = |u| p−2u if p ≥ 2 ∗ s and a result of existence of a ground state, if f is modeled by κu3/(1+u 2 ), for a constant κ. In this last case, we apply the Nehari-Pohozaev manifold introduced by D. Ruiz. Finally, we prove that positive solutions of (−∆ + m2 ) su = f(u) are radially symmetric and decreasing with respect to the origin, if f is modeled by functions like t α, α ∈ (1, 2 ∗ s − 1) or tln t.Item Results on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system : ground state, radial symmetry and Hölder regularity.(2022) Bueno, Hamilton Prado; Mamani, Guido Gutierrez; Medeiros, Aldo Henrique de Souza; Pereira, Gilberto de AssisIn this paper we consider the asymptotically linear, strongly coupled nonlinear system ⎧ ⎪⎨ ⎪⎩ √ −∆ + m2 u = u 2 + v 2 1 + s(u2 + v 2) u + λv, √ −∆ + m2 v = u 2 + v 2 1 + s(u2 + v 2) v + λu, where m > 0, 0 < λ < m and 0 < s < 1/(λ + m) are constants. By applying the Nehari–Pohozaev manifold, we prove that our system has a ground state solution. We also prove that solutions of this system are radially symmetric and belong to C0,μ(RN ) for some 0 < μ < 1 and each N > 1.