Browsing by Author "Micolino, Ricardo"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Chromosomal dynamics in space and time : evolutionary history of Mycetophylax ants across past climatic changes in the Brazilian Atlantic coast.(2019) Micolino, Ricardo; Cristiano, Maykon Passos; Travenzoli, Natália Martins; Lopes, Denilce Meneses; Cardoso, Danon ClemesFungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populations from coastal environments to trace the evolutionary history of the clade in light of chromosomal changes under a historical and geographic context. Our cytogenetic analyses revealed chromosomal differences within and among species. M. morschi exhibited three distinct karyotypes and considerable variability in the localization of 45S rDNA clusters. The molecular phylogeny was congruent with our cytogenetic findings. Biogeographical and divergence time dating analyses estimated that the most recent common ancestor of Mycetophylax would have originated at about 30 Ma in an area including the Amazon and Southern Grasslands, and several dispersion and vicariance events may have occurred before the colonization of the Brazilian Atlantic coast. Diversification of the psammophilous Mycetophylax first took place in the Middle Miocene (ca. 18–10 Ma) in the South Atlantic coast, while “M. morschi” lineages diversified during the Pliocene-Pleistocene transition (ca. 3–2 Ma) through founder-event dispersal for the Northern coastal regions. Psammophilous Mycetophylax diversification fits into the major global climatic events that have had a direct impact on the changes in sea level as well as deep ecological impact throughout South America. We assume therefore that putative chromosomal rearrangements correlated with increased ecological stress during the past climatic transitions could have intensified and/or accompanied the divergence of the psammophilous Mycetophylax. We further reiterate that “M. morschi” comprises a complex of at least three well-defined lineages, and we emphasize the role of this integrative approach for the identification and delimitation of evolutionary lineages.Item Comparative FISH-mapping of TTAGG telomeric sequences to the chromosomes of leafcutter ants (Formicidae, Myrmicinae) : is the insect canonical sequence conserved?(2020) Castro, Carini Picardi Morais de; Cardoso, Danon Clemes; Micolino, Ricardo; Cristiano, Maykon PassosTelomeric sequences are conserved across species. The most common sequence reported among insects is (TTAGG)n , but its universal occurrence is not a consensus because other canonical motifs have been reported. In the present study, we used fluorescence in situ hybridization (FISH) using telomeric probes with (TTAGG)6 repeats to describe the telomere composition of leafcutter ants. We performed the molecular cytogenetic characterization of six Acromyrmex Mayr, 1865 and one Atta Fabricius, 1804 species (Acromyrmex ambiguus (Emery, 1888), Ac. crassispinus (Forel, 1909), Ac. lundii (Guérin-Mèneville, 1838), Ac. nigrosetosus (Forel, 1908), Ac. rugosus (Smith, 1858), Ac. subterraneus subterraneus (Forel, 1893), and Atta sexdens (Linnaeus, 1758)) and described it using a karyomorphometric approach on their chromosomes. The diploid chromosome number 2n = 38 was found in all Acromyrmex species, and the karyotypic formulas were as follows: Ac. ambiguus 2K = 14M + 12SM + 8ST + 4A, Ac. crassispinus 2K = 12M + 20SM + 4ST + 2A, Ac. lundii 2K = 10M + 14SM + 10ST + 4A, Ac. nigrosetosus 2K = 12M + 14SM + 10ST + 2A, and Ac. subterraneus subterraneus 2K = 14M + 18SM + 4ST + 2A. The exact karyotypic formula was not established for Ac. rugosus. FISH analyses revealed the telomeric regions in all the chromosomes of the species studied in the present work were marked by the (TTAGG)6 sequence. These results reinforce the premise that Formicidae presents high homology between their genera for the presence of the canonical sequence (TTAGG)n.Item Karyotype and putative chromosomal inversion suggested by integration of cytogenetic and molecular data of the fungus-farming ant Mycetomoellerius iheringi Emery, 1888.(2020) Micolino, Ricardo; Cristiano, Maykon Passos; Cardoso, Danon ClemesComparative cytogenetic analyses are being increasingly used to collect information on species evolution, for example, diversification of closely related lineages and identification of morphologically indistinguishable species or lineages. Here, we have described the karyotype of the fungus-farming ant Mycetomoellerius iheringi Emery, 1888 and investigated its evolutionary relationships on the basis of molecular and cytogenetic data. The M. iheringi karyotype consists of 2n = 20 chromosomes (2K = 18M + 2SM). We also demonstrated that this species has the classical insect TTAGG telomere organization. Phylogenetic reconstruction showed that M. iheringi is phylogenetically closer to M. cirratus Mayhé-Nunes & Brandão, 2005 and M. kempfi Fowler, 1982. We compared M. iheringi with other congeneric species such as M. holmgreni Wheeler, 1925 and inferred that M. iheringi probably underwent a major pericentric inversion in one of its largest chromosomes, making it submetacentric. We discussed our results in the light of the phylogenetic relationships and chromosomal evolution.Item Phylogenetic reconstruction of the ancestral chromosome number of the genera Anochetus mayr, 1861 and Odontomachus latreille, 1804 (Hymenoptera: Formicidae: Ponerinae).(2022) Afonso Neto, Paulo Cesar; Micolino, Ricardo; Cardoso, Danon Clemes; Cristiano, Maykon PassosRecent phylogenetic and molecular data are changing our knowledge about the relations between species and evolutionary processes resulting in the chromosome variation observed in ants (Hymenoptera: Formicidae). Ants exhibit remarkable variations in morphology, behavior, karyotypes, and chromosome structure. By assembling genetic and chromosome information about the trap-jaw ants from the subfamily Ponerinae, we reconstructed the phylogenetic relationships that inferred the monophyletic condition between the Anochetus and Odontomachus genera and estimated their ancestral haploid chromosome number. According to our inferences, these clades have an ancestral haploid chromosome number n = 15. The most recent common ancestor of Anochetus and Odontomachus has arisen between the Early Paleocene and the Early Eocene periods (time of the most recent common ancestor). In the Anochetus genus, we observed maintenance of the ancestral chromosome number estimated here in most species. This also suggests that pericentric inversions were the primary chromosomal rearrangement modulating the karyotype evolution of this genus. However, a reduction from n = 15–14 is observed in Anochetus emarginatus and Anochetus cf. madaraszi, which likely occurred by centromeric fusion. In contrast, the increase from the ancestral karyotype number in Anochetus horridus suggested centromeric fissions. Odontomachus showed maintenance of the ancestral chromosome number in the “rixosus group” and several gains in all species from the “haematodus group.” Our findings suggest that centromeric fissions and pericentric rearrangements lead to chromosomal changes in trap-jaw ants. Considering the ancestral state estimated here, changes in chromosome morphology are likely due to pericentric inversions, and chromosome number increases are likely due to centric fissions. The higher number of acrocentric or telocentric chromosomes in the karyotypes with n < 15 haploid chromosomes supports such an idea.Item Population-based cytogenetic banding analysis and phylogenetic relationships of the neotropical fungus-farming ant Trachymyrmex holmgreni Wheeler, 1925.(2019) Micolino, Ricardo; Cristiano, Maykon Passos; Cardoso, Danon ClemesTrachymyrmex is one of the most species-rich genera within fungus-farming ants and presents intraspecific cytogenetic polymorphisms as well as possible cryptic species. This ant genus is currently paraphyletic. Therefore, to unravel systematic and taxonomic misunderstandings, it is necessary to incorporate new information. We aimed to cytogenetically and genetically examine Trachymyrmex holmgreni populations from southern and northern Brazil to identify intraspecific chromosomal variations that support incipient speciation and reveal the species' position in a molecular phylogeny. Our cytogenetic approach did not show population variation in the mapping of both 18S rDNA and the TTAGG(6) motif, presenting instead a pattern characteristic of correlated species. However, the clustered pattern of the microsatellite GA(15) showed significant differences among populations: a well-defined block in each homologue, distinctly irregular signs between homologues, and blocks in 2 pairs of homologues. Our phylogenetic reconstruction yielded unexpected results, grouping representatives of 3 former morphological groups into 1 clade, namely T. urichii, T. papulatus, and T. holmgreni. Previously, it was suggested that northern and southern populations of T. holmgreni may be undergoing incipient speciation, but we can only indicate that the southernmost population differs prominently from the others in its distribution pattern of the microsatellite GA(15). Our study also supports the uniformity of karyotypes and repetitive DNA from both telomeric sequences and ribosomal DNA in Trachymyrmex studied here. In addition, we clarify some phylogenetic uncertainties within the genus and suggest further relevant systematic changes. Finally, additional studies utilizing other probes and additional populations may allow the detection of hidden genetic variation.