Browsing by Author "Nader, Beck"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Classical and stochastic mine planning techniques, state of the art and trends.(2018) Torres, Vidal Félix Navarro; Nader, Beck; Arroyo Ortiz, Carlos Enrique; Souza, Felipe Ribeiro; Burgarelli, Hudson Rodrigues; Chaves, Leonardo Soares; Carvalho, Luiz Alberto; Câmara, Taís Renata; Fernandes, Eunírio Zanetti; Galery, RobertoDetermination of the best possible ultimate pit for an open pit mine is a fundamental subject that has undergone a highly evolutionary process, reviewed in this study, since the correct choice carries substantial economic impact for the industry. The correct choice can be very beneficial for project analysis, whereas an incorrect choice has the potential to mask huge financial and economic future losses that could render a project unfeasible. The advent of computers in the 1960s allowed sophisticated analysis for the selection of the best ultimate pit determination, under specific modifying factors such as economic, social, environmental, and political, but only in deterministic situations, i.e., when the problem and variables for the ultimate pit determinations were considered deterministically and almost always based on average values. Techniques such as the Lerchs– Grossman algorithm and mixed-integer programming are among many standard tools now used by the mineral industry. Geological uncertainty and the associated risks as well as the need to consider the appropriate time to mine a block during a mine operation have a significant impact on the net present value of the resulting ultimate pits. Stochastic aspects embed a probabilistic component that varies in time and are now under intense investigation by researchers, who are creating algorithms that can be experimented with and tested in real mine situations. One can expect that once these algorithms demonstrate their efficiency and superior results, they will readily dominate the industry.Item Mine fleet cost evaluation : Dijkstra’s optimized path.(2019) Souza, Felipe Ribeiro; Câmara, Taís Renata; Torres, Vidal Félix Navarro; Nader, Beck; Galery, RobertoThe transport distance in a mining operation strongly influences a mine op- eration revenue and its operational cycle because it is a fundamental part of the total mining costs. Generally, the transport route is determined based on an engi- neer’s practical knowledge, which does not consider any mechanism to optimize the possible routes to be taken. In an attempt to establish a methodology for cal- culating the path that results in minimum costs to transport the mined block to its destination, the Dijkstra methodology is applied to a tree graph analysis, where the mining blocks are analysed as nodes of the tree. The transport cost is reflected as the arc of the graphs, which can use the Euclidean distance or the transport time for the calculation of the minimum path. The result obtained from the Di- jkstra algorithm provided a non-operational route; to overcome this problem, an adjustment was performed through non-parametric equations. In this manner, it was possible to determine the transport costs for each block of the model. The paths based on Euclidean distance and transport time showed a tendency to in- crease for deeper mining regions. Identifying areas of largest growth and correctly quantifying their values increase the efficiency of mining planning.Item Optimum mine production rate based on price uncertainty.(2019) Souza, Felipe Ribeiro; Câmara, Taís Renata; Torres, Vidal Félix Navarro; Nader, Beck; Galery, RobertoThe production rate of a mining operation has an important effect on the opera- tional cycle and gross profit, which are often evaluated based on engineering practices. Assessment of the economic performance of mine operations in mining engineering is of great importance because an incorrect production rate can result in significant financial losses. The production rate is composed of two bases: the cost estimation and the price scenario. Bureau of Mines studies performed on American mines indicated that processing costs can be estimated through the production rate. This article pro- poses to connect the model presented by the Bureau of Mines and queuing theory to describe the operational costs, which are used to develop a production optimization methodology. The proposed cost composition describes a production system to verify the law of diminishing returns and the economy of scale. Between these regions of the production curve, the optimum point was determined with mathematical precision.