Browsing by Author "Oliveira, Victor de Alvarenga"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Capture of CO2 by vermiculite impregnated with CaO.(2022) Pereira, Matheus Henrique Simplício; Santos, Cláudio Gouvêa dos; Lima, Geraldo Magela de; Bruziquesi, Carlos Giovani Oliveira; Oliveira, Victor de AlvarengaVermiculite samples were impregnated with different amounts of calcium oxide by the con- ventional thermal heating technique and subject to CO2 capture experiments in thermal analysis equipment. The amount of CO2 captured by calcium oxide increased from 13 g of CO2 per mol of CaO to 16.8 g of CO2 per mol of CaO when the experiments were carried out with pure calcium oxide and vermiculite impregnated with CaO (1:1), respectively. Integral isoconversional methods of Kissinger-Akahira-Sunose (KAS) and Osawa-Flynn-Wall (OFW) were used for the kinetic study of the process and good correlation coefficients were achieved. The apparent activation energy values showed that for low conversions (a < 0.3) the controlling step of the process is a mixed step where the chemical reaction and the dif- fusion of the reagents into the vermiculite have rates of the same order of magnitude (20 kJ < Ea < 40 kJ). For higher conversions values (a > 0.3) the apparent activation energy values suggest that the slow step is a chemical step (Ea> 40 kJ).Item Magnetic separation studies of a lateritic nickel ore.(2021) Ramírez, Rafael Leonardo Silva; Santos, Claudio Gouvea dos; Lima, Geraldo Magela de; Pereira, Matheus Henrique Simplício; Oliveira, Victor de AlvarengaHydrogen reduction and thermal treatment experiments were carried out in the laboratory using a transition zone lateritic nickel ore. The products of the pyrometallurgical operations were subjected to magnetic separation. The ore and samples produced after the thermal processing (reduction and thermal treatment) were characterized by X-ray diffractometry (XRD), thermogravimetric analysis (TG), scanning electronic microscopy (SEM), and energy dispersive spectrometry (EDS). The qualitative identification of the main mineral transformations was performed and the influence of these thermal transformations in the magnetic properties of the sample was studied. When the reduction experiments were performed at 800 ° C, with a magnetic flux of 97.5 ± 10.6 mT, the nickel content increased by up to 33 % (recovery of ≈ 75 %) in the magnetic fraction. During the formation of magnetite in the reduction experiments, carried out at 400°C, the sample became very magnetic and, consequently, the unit operation of magnetic separation was not selective. It was possible to remove magnesium from all samples, regardless of the thermal treatment or reduction temperature used. The contents of this element were adjusted to the characteristic values of a limonitic ore.