Browsing by Author "Pinto, Rafael Martinelli"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Exponential-size neighborhoods for the pickup-and-delivery traveling salesman problem.(2022) Pacheco, Toni Tiago da Silva; Pinto, Rafael Martinelli; Subramanian, Anand; Toffolo, Túlio Ângelo Machado; Vidal, Thibaut Victor GastonNeighborhood search is a cornerstone of state-of-the-art traveling salesman and vehicle routing metaheuristics. While neighborhood exploration procedures are well developed for problems with individual services, their counterparts for one-to-one pickup-and-delivery problems have been more scarcely studied. A direct extension of classic neighborhoods is often inefficient or complex due to the necessity of jointly considering service pairs. To circumvent these issues, we introduce major improvements to existing neighborhood searches for the pickup-and-delivery traveling salesman problem and new large neighborhoods. We show that the classical Relocate-Pair neighborhood can be fully explored in O(n 2 ) instead of O(n 3 ) time. We adapt the 4-Opt and Balas-Simonetti neighborhoods to consider precedence constraints. Moreover, we introduce an exponential-size neighborhood called 2k-Opt, which includes all solutions generated by multiple nested 2-Opts and can be searched in O(n 2 ) time using dynamic programming. We conduct extensive computational experiments, highlighting the significant contribution of these new neighborhoods and speedup strategies within two classical metaheuristics. Notably, our approach permits to repeatedly solve small pickup-and-delivery problem instances to optimality or near-optimality within milliseconds, and therefore it represents a valuable tool for time-critical applications such as meal delivery or mobility on demand.Item Large neighborhood-based metaheuristic and branch-and-price for the pickup and delivery problem with split loads.(2018) Haddad, Matheus Nohra; Pinto, Rafael Martinelli; Vidal, Thibaut Victor Gaston; Martins, Simone de Lima; Ochi, Luiz Satoru; Souza, Marcone Jamilson Freitas; Hartl, RichardWe consider the multi-vehicle one-to-one pickup and delivery problem with split loads, a NP-hard problem linked with a variety of applications for bulk product transportation, bike-sharing systems and inventory re-balancing. This problem is notoriously difficult due to the interaction of two challenging vehicle routing attributes, “pickups and deliveries” and “split deliveries”. This possibly leads to optimal solutions of a size that grows exponentially with the instance size, containing multiple visits per customer pair, even in the same route. To solve this problem, we propose an iterated local search metaheuristic as well as a branch-and-price algorithm. The core of the metaheuristic consists of a new large neighborhood search, which reduces the problem of finding the best insertion combination of a pickup and delivery pair into a route (with possible splits) to a resource-constrained shortest path and knapsack problem. Similarly, the branch-and-price algorithm uses sophisticated labeling techniques, route relaxations, pre-processing and branching rules for an efficient resolution. Our computational experiments on classical single-vehicle instances demonstrate the excellent performance of the metaheuristic, which produces new best known solutions for 92 out of 93 test instances, and outperforms all previous algorithms. Experimental results on new multi-vehicle instances with distance constraints are also reported. The branch-and-price algorithm produces optimal solutions for instances with up to 20 pickup-and-delivery pairs, and very accurate solutions are found by the metaheuristic.