PPGEM - Doutorado (Teses)
Permanent URI for this collection
Browse
Browsing PPGEM - Doutorado (Teses) by Subject "Aprendizado de máquina"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Análise de risco geotécnico em taludes rochosos de mina com uso de técnicas estatísticas multivariadas e de aprendizado de máquina.(2019) Santos, Tatiana Barreto dos; Lana, Milene Sabino; Klen, André Monteiro; Canbulat, Ismet; Lana, Milene Sabino; Carneiro, Cláudia Aparecida Nonato Gomes; Charbel, Paulo André; Pereira, Thiago Martins; Destro, EltonO controle do perigo e risco de rupturas em taludes rochosos é uma preocupação em taludes urbanos, rodoviários e de minas. O risco geotécnico é definido matematicamente pela probabilidade da ocorrência da ruptura do talude vezes as consequências adversas desta. É de conhecimento da comunidade geotécnica que a probabilidade de ruptura em taludes rochosos está relacionada às características da rocha intacta e das descontinuidades presentes nos maciços rochosos. Quanto às consequências associadas às rupturas em empreendimentos mineiros pode-se citar: as perdas econômicas e humanas. Os sistemas de análise de risco utilizados normalmente são essencialmente qualitativos e carecem, muitas vezes, de embasamento estatístico. Este trabalho propõe metodologias de análise de perigo e risco baseado no uso de técnicas de estatística multivariada e de aprendizado de máquina. Sistemas de análise de perigo e risco foram propostos. O sistema de análise de perigo foi construído utilizando análise de componentes principais e análise discriminante, com taxa de erro igual a 11,36%. Por fim um gráfico de análise de perigo foi gerado utilizando a distância de Mahalanobis. O sistema de análise de risco foi construído utilizando regressão logística e árvores de classificação. A técnica de regressão logística foi utilizada para gerar uma função de predição capaz de se determinar a probabilidade de que um talude de mina seja estável ou não. A função apresentou taxa de erro igual a 7,95%. A técnica de árvores de decisão foi utilizada para gerar um sistema em que se determina os níveis de consequências adversas da ruptura. A árvore gerada apresentou taxa de erro igual a 18,18%. Por fim foi proposta uma matriz de risco. O sistemas de análise de perigo e risco propostos podem igualmente serem aplicados em taludes rochosos de mina de qualquer natureza. Para obtenção dos sistemas de análise de perigo e risco foi utilizado um banco de dados de 88 taludes de mina localizados em diversos países do mundo. Ambos os sistemas propostos são fáceis de serem utilizados e aplicados de forma expedita em empreendimentos mineiros de grande a pequeno porte.Item Especificação de rochas ornamentais utilizadas na construção civil aplicando técnicas de estatística multivariada e aprendizado de máquina.(2023) Zagôto, Juliano Tessinari; Lana, Milene Sabino; Pereira, Tiago Martins; Lana, Milene Sabino; Santos, Allan Erlikhman Medeiros; Santos, Tatiana Barreto dos; Frasca, Maria Heloisa Barros de Oliveira; Klen, André MonteiroO Brasil é mundialmente reconhecido como potência produtora e exportadora de rochas ornamentais. Com grande beleza estética e qualidades físico-mecânicas inquestionáveis, as rochas ornamentais brasileiras estão espalhadas por grandes obras no mundo. Nessa perspectiva, este trabalho visa estabelecer um índice de qualidade e um critério de seleção de rochas ornamentais para revestimentos aplicados na construção civil. Para isso foi elaborado um banco de dados dos resultados dos ensaios de caracterização tecnológica de 285 amostras de rochas naturais, adotados como variáveis. Esse estudo propôs um índice de qualidade para as rochas ornamentais utilizando-se dos valores dos parâmetros tecnológicos gerais de referência, atribuindo pesos a eles e conforme o ambiente no qual a rocha é aplicado. Os ambientes foram definidos como A (piso interno seco de baixo tráfego), B (parede interna seca), C (parede interna molhada), D (parede externa), E (bancada interna seca), F (bancada interna molhada), G (bancada externa) e H (outras aplicações). Com o auxílio do software estatístico livre R foram utilizados métodos de estatística multivariada e de aprendizado de máquina. Da análise de componentes principais, pudemos extrair que as três primeiras componentes explicam aproximadamente 51% do problema. Da análise de agrupamentos foram gerados 5 (cinco) grupos classificados como G1 (Grupo dos Quartzitos), G2 (Grupo dos Granitos), G3 (Grupo majoritariamente formado por Granitos), G4 (Grupo majoritariamente formado por Granitos ricos em granada ou grupo dos Gnaisses) e G5 (Grupo dos Mármores). A partir daí, foram realizadas as estatísticas descritivas intra e inter grupos. De posse dos grupos formados, foi treinada uma árvore de decisão capaz de indicar uma rocha para um determinado ambiente com altíssimo grau de acerto. A acurácia da árvore de decisão foi de 0,96 e o Índice Kappa 0,95. O trabalho apresenta uma nova abordagem para indicar assertivamente uma rocha natural para um determinado ambiente, diminuindo a subjetividade por meio de um sistema de classificação. Apesar da complexidade matemática das técnicas adotadas, os resultados gerados são de fácil interpretação e simples visualização.