Numerical simulation of GUE two-point correlation and cluster functions.
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Numerical simulations of the two-point eigenvalue correlation and cluster functions of the Gaussian unitary ensemble (GUE)
are carried out directly from their definitions in terms of deltas functions. The simulations are compared with analytical
results which follow from three analytical formulas for the two-point GUE cluster function: (i) Wigner’s exact formula
in terms of Hermite polynomials, (ii) Brezin and Zee’s approximate formula which is valid for points with small enough
separations and (iii) French, Mello and Pandey’s approximate formula which is valid on average for points with large enough
separations. It is found that the oscillations present in formulas (i) and (ii) are reproduced by the numerical simulations if the
width of the function used to represent the delta function is small enough and that the non-oscillating behaviour of formula
(iii) is approached as the width is increased.
Description
Keywords
Random matrix theory, Gaussian unitary ensemble, Correlation functions
Citation
SARGEANT, A. J. Numerical simulation of GUE two-point correlation and cluster functions. Brazilian Journal of Physics, v. 51, p. 308-315, 2021. Disponível em: <https://link.springer.com/article/10.1007/s13538-020-00802-6>. Acesso em: 29 abr. 2022.