Confidence intervals for spatial scan statistic.

dc.contributor.authorSilva, Ivair Ramos
dc.contributor.authorDuczmal, Luiz Henrique
dc.contributor.authorKulldorff, Martin
dc.date.accessioned2022-03-03T19:03:18Z
dc.date.available2022-03-03T19:03:18Z
dc.date.issued2021pt_BR
dc.description.abstractThe spatial scan statistic is a popular statistical tool to detect geographical clusters of diseases. The basic problem of constructing confidence intervals for the relative risk of the most likely cluster has remained an open question. To cover this lack, a Monte Carlo based interval estimator for the relative risk of the primary cluster is derived. The method works for the circular spatial scan statistic applied to binomial data, and it ensures, by construction, an analytical control of the coverage probability under the nominal confidence coefficient. In addition, its performance is illustrated on simulated and real data of birth defects in New York State.pt_BR
dc.identifier.citationSILVA, I. R.; DUCZMAL, L. H.; KULLDORFF, M. Confidence intervals for spatial scan statistic. Computational Statistics & Data Analysis, artigo 107185, 2021. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/S0167947321000190>. Acesso em: 25 ago. 2021.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.csda.2021.107185pt_BR
dc.identifier.issn0167-9473
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/14623
dc.identifier.uri2https://www.sciencedirect.com/science/article/abs/pii/S0167947321000190pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectRelative riskpt_BR
dc.subjectMonte Carlopt_BR
dc.subjectCoverage probabilitypt_BR
dc.subjectPrimary clusterpt_BR
dc.titleConfidence intervals for spatial scan statistic.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_ConfidenceIntervalsSpatial.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: