Multiplicity of solutions for p-biharmonic problems with critical growth.
dc.contributor.author | Bueno, Hamilton Prado | |
dc.contributor.author | Leme, Leandro Correia Paes | |
dc.contributor.author | Rodrigues, Helder Cândido | |
dc.date.accessioned | 2018-11-20T14:40:43Z | |
dc.date.available | 2018-11-20T14:40:43Z | |
dc.date.issued | 2018 | |
dc.description.abstract | We prove the existence of infinitely many solutions for p-biharmonic problems in a bounded, smooth domain Ω with concave-convex nonlinearities dependent upon a parameter λ and a positive continuous function f:Ω¯¯¯¯→R. We simultaneously handle critical case problems with both Navier and Dirichlet boundary conditions by applying the Ljusternik-Schnirelmann method. The multiplicity of solutions is obtained when λ is small enough. In the case of Navier boundary conditions, all solutions are positive, and a regularity result is proved. | pt_BR |
dc.identifier.citation | BUENO, H. P.; LEME, L. C. P.; RODRIGUES, H. C. Multiplicity of solutions for p-biharmonic problems with critical growth. Rocky Mountain Journal of Mathematics, v. 48, n. 2, p. 425-442, 2018. Disponível em: <https://projecteuclid.org/euclid.rmjm/1528077624>. Acesso em: 16 jun. 2018. | pt_BR |
dc.identifier.issn | 00357596 | |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/10535 | |
dc.identifier.uri2 | https://projecteuclid.org/euclid.rmjm/1528077624 | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.rights | restrito | pt_BR |
dc.title | Multiplicity of solutions for p-biharmonic problems with critical growth. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ARTIGO_MultiplicitySolutionsBiharmonic.pdf
- Size:
- 164.13 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 924 B
- Format:
- Item-specific license agreed upon to submission
- Description: