Multiplicity of solutions for p-biharmonic problems with critical growth.

dc.contributor.authorBueno, Hamilton Prado
dc.contributor.authorLeme, Leandro Correia Paes
dc.contributor.authorRodrigues, Helder Cândido
dc.date.accessioned2018-11-20T14:40:43Z
dc.date.available2018-11-20T14:40:43Z
dc.date.issued2018
dc.description.abstractWe prove the existence of infinitely many solutions for p-biharmonic problems in a bounded, smooth domain Ω with concave-convex nonlinearities dependent upon a parameter λ and a positive continuous function f:Ω¯¯¯¯→R. We simultaneously handle critical case problems with both Navier and Dirichlet boundary conditions by applying the Ljusternik-Schnirelmann method. The multiplicity of solutions is obtained when λ is small enough. In the case of Navier boundary conditions, all solutions are positive, and a regularity result is proved.pt_BR
dc.identifier.citationBUENO, H. P.; LEME, L. C. P.; RODRIGUES, H. C. Multiplicity of solutions for p-biharmonic problems with critical growth. Rocky Mountain Journal of Mathematics, v. 48, n. 2, p. 425-442, 2018. Disponível em: <https://projecteuclid.org/euclid.rmjm/1528077624>. Acesso em: 16 jun. 2018.pt_BR
dc.identifier.issn00357596
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/10535
dc.identifier.uri2https://projecteuclid.org/euclid.rmjm/1528077624pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.titleMultiplicity of solutions for p-biharmonic problems with critical growth.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_MultiplicitySolutionsBiharmonic.pdf
Size:
164.13 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
924 B
Format:
Item-specific license agreed upon to submission
Description: