Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats.

dc.contributor.authorRossoni Júnior, Joamyr Victor
dc.contributor.authorAraújo, Glaucy Rodrigues de
dc.contributor.authorPádua, Bruno da Cruz
dc.contributor.authorChaves, Míriam Martins
dc.contributor.authorPedrosa, Maria Lúcia
dc.contributor.authorSilva, Marcelo Eustáquio
dc.contributor.authorCosta, Daniela Caldeira
dc.date.accessioned2015-03-25T15:56:55Z
dc.date.available2015-03-25T15:56:55Z
dc.date.issued2012
dc.description.abstractAnnatto has been identified asecarotenoids that havetantioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body’s defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes.pt_BR
dc.identifier.citationROSSONI JÚNIOR, J. V. et al. Annato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats. Journal of Clinical Biochemistry and Nutrition, v. 50, p. 177-183, 2012. Disponível em: <https://www.jstage.jst.go.jp/article/jcbn/50/3/50_11-49/_article>. Acesso em: 20 fev. 2015.pt_BR
dc.identifier.doihttps://dx.doi.org/10.3164%2Fjcbn.11-49
dc.identifier.issn0912-0009
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/4745
dc.language.isoen_USpt_BR
dc.rights.licenseThis is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fonte: Journal of Clinical Biochemistry and Nutrition <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334368/>. Acesso em: 20 fev. 2015.pt_BR
dc.subjectDiabetespt_BR
dc.subjectAnnattopt_BR
dc.subjectNeutrophilspt_BR
dc.subjectReactive oxygen speciespt_BR
dc.subjectNitric oxidept_BR
dc.titleAnnato extract and β-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_AnnatoExtractCarotene.pdf
Size:
358.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.57 KB
Format:
Item-specific license agreed upon to submission
Description: