Approaches for automated damage detection in structural health monitoring.

No Thumbnail Available
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Conhecer a integridade de sistemas estruturais de grande vulto durante o serviço, em tempo real e continuamente, é uma grande necessidade dos fabricantes, proprietários, concessionários, usuários finais e equipes de manutenção destes sistemas. Tal conhecimento provê aos gestores informações relevantes sobre o desempenho estrutural para direcionar melhorias no projeto e produção, além de minimizar custos de manutenção para o proprietário/concessionário e de aumentar a segurança de operação da estrutura para os usuários. Dentre as diversas atividades que compreendem o Monitoramento da Integridade Estrutural (MIE), a detecção de danos constitui o núcleo básico para atender aos aspectos de manutenção e segurança. Para tanto, o programa de MIE deve dispor de ferramentas computacionais capazes de analisar as informações adquiridas continuamente e em tempo real, fornecendo a cada momento um ou mais indicadores da ocorrência de dano (ou alteração) na estrutura. Portanto, para que uma técnica de detecção de danos seja compatível com o escopo do MIE ela deve, idealmente, prover respostas de forma automática, não supervisionada e contínua, baseando-se unicamente em testes de vibração ambiente com a estrutura em operação. Visando atingir estes objetivos, esta tese apresenta duas abordagens: uma baseada na evolução dos parâmetros modais, isto é, frequências naturais, taxas de amortecimento e modos de vibração; outra baseada na análise direta de medições de aceleração. As metodologias propostas foram avaliadas em estruturas reais e demonstraram desempenhos promissores quando aplicadas em monitoramentos de estruturas em longo prazo, contínuos e em tempo real.
Description
Programa de Pós Graduação em Engenharia Civil. Departamento de Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto.
Keywords
Structural health monitoring, Damage detection, Modal identification
Citation
CARDOSO, Rharã de Almeida. Approaches for automated damage detection in structural health monitoring. 2018. 143 f. Tese (Doutorado em Engenharia Civil) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2018.