Computing the best constant in the Sobolev inequality for a ball.

dc.contributor.authorErcole, Grey
dc.contributor.authorEspírito Santo, Júlio César do
dc.contributor.authorMartins, Eder Marinho
dc.date.accessioned2018-11-22T13:27:47Z
dc.date.available2018-11-22T13:27:47Z
dc.date.issued2017
dc.description.abstractLet B1 be the unit ball of R N , N ≥ 2, and let p ? = N p/(N − p) if 1 < p < N and p ? = ∞ if p ≥ N. For each q ∈ [1, p? ) let wq ∈ W1,p 0 (B1) be the positive function such that kwqkLq(B1) = 1 and λq(B1) := min ( k∇uk p Lp(B1) kuk p Lq(B1) : 0 6≡ u ∈ W1,p 0 (B1) ) = k∇wqk p Lp(B1) . In this paper we develop an iterative method for obtaining the pair (λq(B1), wq), starting from w1. Since w1 is explicitly known, the method is computationally practical, as our numerical tests show. 2010 Mathematics Subject Classification. 34L16; 35J25; 65N25 Keywords: Best Sobolev constant; extremal functions; inverse iteration method; p-Laplacian.pt_BR
dc.identifier.citationENCOLE, G.; ESPÍRITO SANTO, J. C do.; MARTINS, E. M. Computing the best constant in the Sobolev inequality for a ball. Applicable Analysis, v. 1, p. 1-17, 2018. Disponível em: <https://www.tandfonline.com/doi/full/10.1080/00036811.2017.1422723>. Acesso em: 16 jun. 2018.pt_BR
dc.identifier.issn1563504X
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/10560
dc.identifier.uri2https://www.tandfonline.com/doi/full/10.1080/00036811.2017.1422723pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.titleComputing the best constant in the Sobolev inequality for a ball.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_ComputingBestConstant.pdf
Size:
817.67 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
924 B
Format:
Item-specific license agreed upon to submission
Description: