Asymptotic behaviour as p → ∞ of least energy solutions of a (p, q(p))-Laplacian problem.
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We study the asymptotic behaviour, as p → ∞, of the least energy solutions of the problem
−(Δp + Δq(p))u = λp|u(xu)| p−2u(xu)δxu in Ω u = 0 on ∂Ω, where xu is the (unique) maximum point of |u|, δxu is the Dirac delta distribution supported at xu, limp→∞ q(p) p = Q ∈ (0, 1) if N<q(p) < p (1,∞) if N<p<q(p) and λp > 0 is such that min ∇u∞ u∞ : 0 ≡ u ∈ W1,∞(Ω) ∩ C0(Ω) limp→∞(λp) 1/p < ∞.
Description
Keywords
Dirac delta, Infinity Laplacian, Nehari set, Viscosity solution
Citation
ALVES, C. O.; ERCOLE, G.; PEREIRA, G. de A. Asymptotic behaviour as p → ∞ of least energy solutions of a (p, q(p))-Laplacian problem. Proceedings of the Royal Society of Edinburgh Section A-Mathematics, v. 149, n. 6, p. 1493-1522, 2019. Disponível em: <https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/asymptotic-behaviour-as-p-of-least-energy-solutions-of-a-p-qplaplacian-problem/CF17604E272C08E1DE32A15413B70B46>. Acesso em: 06 jul. 2022.