Multiplicity of positive solutions for the Kirchhoff-type equations with critical exponent in RN.
dc.contributor.author | Miyagaki, Olimpio Hiroshi | |
dc.contributor.author | Leme, Leandro Correia Paes | |
dc.contributor.author | Rodrigues, Bruno Mendes | |
dc.date.accessioned | 2018-11-01T15:38:19Z | |
dc.date.available | 2018-11-01T15:38:19Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In this work we study the existence and multiplicity of solutions to the following Kirchhofftype problem with critical nonlinearity in RN ⎧⎨ ⎩ − ( a + b ∫ RN |∇u|pdx ) Δpu = μup∗−1 + λf (x, u); x ∈ RN , u ∈ D1,p(RN ), where N ≥ 2p, μ, λ, a, b > 0 and the nonlinearity f (x, u) satisfies certain subcritical growth conditions. By using topological and variational methods, infinitely many positive solutions are obtained. | pt_BR |
dc.identifier.citation | MIYAGAKI, O. H.; LEME, L. C. P.; RODRIGUES, B. M. Multiplicity of positive solutions for the Kirchhoff-type equations with critical exponent in RN. Computers & Mathematics with Applications, v. 75, n. 9, p. 3201-3212, maio 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0898122118300579>. Acesso em: 16 jun. 2018. | pt_BR |
dc.identifier.issn | 08981221 | |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/10505 | |
dc.identifier.uri2 | https://www.sciencedirect.com/science/article/pii/S0898122118300579#! | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.rights | restrito | pt_BR |
dc.subject | Variational methods | pt_BR |
dc.subject | p-Laplacian | pt_BR |
dc.title | Multiplicity of positive solutions for the Kirchhoff-type equations with critical exponent in RN. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ARTIGO_MultiplicityPositiveSolutions.pdf
- Size:
- 372.48 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 924 B
- Format:
- Item-specific license agreed upon to submission
- Description: