Results on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system : ground state, radial symmetry and Hölder regularity.

dc.contributor.authorBueno, Hamilton Prado
dc.contributor.authorMamani, Guido Gutierrez
dc.contributor.authorMedeiros, Aldo Henrique de Souza
dc.contributor.authorPereira, Gilberto de Assis
dc.date.accessioned2023-08-18T19:42:02Z
dc.date.available2023-08-18T19:42:02Z
dc.date.issued2022pt_BR
dc.description.abstractIn this paper we consider the asymptotically linear, strongly coupled nonlinear system ⎧ ⎪⎨ ⎪⎩ √ −∆ + m2 u = u 2 + v 2 1 + s(u2 + v 2) u + λv, √ −∆ + m2 v = u 2 + v 2 1 + s(u2 + v 2) v + λu, where m > 0, 0 < λ < m and 0 < s < 1/(λ + m) are constants. By applying the Nehari–Pohozaev manifold, we prove that our system has a ground state solution. We also prove that solutions of this system are radially symmetric and belong to C0,μ(RN ) for some 0 < μ < 1 and each N > 1.pt_BR
dc.identifier.citationBUENO, H. P. et al. Results on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system: ground state, radial symmetry and Hölder regularity. Nonlinear Analysis, v. 221, artigo 112916, abr. 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0362546X22000839>. Acesso em: 06 jul. 2023.pt_BR
dc.identifier.doihttps://doi.org/10.1016/j.na.2022.112916pt_BR
dc.identifier.issn0362-546X
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/17267
dc.identifier.uri2https://www.sciencedirect.com/science/article/pii/S0362546X22000839pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectPseudo-relativistic Schrödinger operatorpt_BR
dc.subjectAsymptotic linear systempt_BR
dc.subjectNehari–Pohozaev manifoldpt_BR
dc.titleResults on a strongly coupled, asymptotically linear pseudo-relativistic Schrödinger system : ground state, radial symmetry and Hölder regularity.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_ResultsStronglyCoupled.pdf
Size:
784.38 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: