Asymptotic behavior of the p-torsion functions as p goes to 1.
dc.contributor.author | Bueno, Hamilton | |
dc.contributor.author | Ercole, Grey | |
dc.contributor.author | Macedo, Shirley da Silva | |
dc.date.accessioned | 2018-01-18T13:23:10Z | |
dc.date.available | 2018-01-18T13:23:10Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Let Ω be a Lipschitz bounded domain of RN, N ≥ 2, and let up ∈ W1,p 0 (Ω) denote the p-torsion function of Ω, p > 1. It is observed that the value 1 for the Cheeger constant h(Ω) is threshold with respect to the asymptotic behavior of up, as p → 1+, in the following sense: when h(Ω) > 1, one has limp→1+ up L∞(Ω) = 0, and when h(Ω) < 1, one has limp→1+ up L∞(Ω) = ∞. In the case h(Ω) = 1, it is proved that lim supp→1+ up L∞(Ω) < ∞. For a radial annulus Ωa,b, with inner radius a and outer radius b, it is proved that limp→1+ up L∞(Ωa,b) = 0 when h(Ωa,b) = 1. | pt_BR |
dc.identifier.citation | BUENO, H.; ERCOLE, G.; MACEDO, S. da S. Asymptotic behavior of the p-torsion functions as p goes to 1. Archiv der Mathematik, v. 107, p. 63-72, 2016. Disponível em: <https://link.springer.com/article/10.1007/s00013-016-0922-2>. Acesso em: 02 out. 2017. | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s00013-016-0922-2 | |
dc.identifier.issn | 1420-8938 | |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/9261 | |
dc.identifier.uri2 | https://link.springer.com/article/10.1007/s00013-016-0922-2 | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.rights | restrito | pt_BR |
dc.subject | Asymptotic behavior | pt_BR |
dc.subject | Cheeger constant | pt_BR |
dc.title | Asymptotic behavior of the p-torsion functions as p goes to 1. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ARTIGO_AsymptoticBehaviorPtorsion.pdf
- Size:
- 521.97 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 924 B
- Format:
- Item-specific license agreed upon to submission
- Description: