Asymptotic behavior of the p-torsion functions as p goes to 1.

dc.contributor.authorBueno, Hamilton
dc.contributor.authorErcole, Grey
dc.contributor.authorMacedo, Shirley da Silva
dc.date.accessioned2018-01-18T13:23:10Z
dc.date.available2018-01-18T13:23:10Z
dc.date.issued2016
dc.description.abstractLet Ω be a Lipschitz bounded domain of RN, N ≥ 2, and let up ∈ W1,p 0 (Ω) denote the p-torsion function of Ω, p > 1. It is observed that the value 1 for the Cheeger constant h(Ω) is threshold with respect to the asymptotic behavior of up, as p → 1+, in the following sense: when h(Ω) > 1, one has limp→1+ up L∞(Ω) = 0, and when h(Ω) < 1, one has limp→1+ up L∞(Ω) = ∞. In the case h(Ω) = 1, it is proved that lim supp→1+ up L∞(Ω) < ∞. For a radial annulus Ωa,b, with inner radius a and outer radius b, it is proved that limp→1+ up L∞(Ωa,b) = 0 when h(Ωa,b) = 1.pt_BR
dc.identifier.citationBUENO, H.; ERCOLE, G.; MACEDO, S. da S. Asymptotic behavior of the p-torsion functions as p goes to 1. Archiv der Mathematik, v. 107, p. 63-72, 2016. Disponível em: <https://link.springer.com/article/10.1007/s00013-016-0922-2>. Acesso em: 02 out. 2017.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s00013-016-0922-2
dc.identifier.issn1420-8938
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/9261
dc.identifier.uri2https://link.springer.com/article/10.1007/s00013-016-0922-2pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectAsymptotic behaviorpt_BR
dc.subjectCheeger constantpt_BR
dc.titleAsymptotic behavior of the p-torsion functions as p goes to 1.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_AsymptoticBehaviorPtorsion.pdf
Size:
521.97 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
924 B
Format:
Item-specific license agreed upon to submission
Description: