Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47phox phosphorylation of NADPH oxidase in SK Hep-1 cells.
No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Baccharis trimera, popularly known as ‘‘carqueja’’, is a native South-American plant possessing a high concentration of polyphenolic
compounds and therefore high antioxidant potential. Despite the antioxidant potential described for B. trimera, there are no reports
concerning the signaling pathways involved in this process. So, the aim of the present study was to assess the influence of B. trimera
on the modulation of PKC signaling pathway and to characterize the effect of the nicotinamide adenine dinucleotide phosphate
oxidase enzyme (NOX) on the generation of reactive oxygen species in SK Hep-1 cells. SK-Hep 1 cells were treated with B. trimera,
quercetin, or rutin and then stimulated or notwith PMA/ionomycin and labeled with carboxy H2DCFDA for detection of reactive oxygen
species by flow cytometer. The PKC expression by Western blot and enzyme activity was performed to evaluate the influence of
B. trimera and quercetin on PKC signaling pathway. p47phox and p47phox phosphorylated expression was performed byWestern blot
to evaluate the influence of B. trimera on p47phox phosphorylation. The results showed that cells stimulated with PMA/ionomycin
(activators of PKC) showed significantly increased reactive oxygen species production, and this production returned to baseline levels
after treatment with DPI (NOX inhibitor). Both B. trimera and quercetin modulated reactive oxygen species production through the
inhibition of PKC protein expression and enzymatic activity, also with inhibition of p47phox phosphorylation. Taken together, these
results suggest that B. trimera has a potentialmechanism for inhibiting reactive oxygen species production through the PKC signaling
pathway and inhibition subunit p47phox phosphorylation of nicotinamide adenine dinucleotide phosphate oxidase.
Description
Keywords
Nicotinamide adenine dinucleotide phosphate oxidase, Reactive oxygen species, Quercetin, Rutin
Citation
ARAÚJO, G. R. et al. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47phox phosphorylation of NADPH oxidase in SK Hep-1 cells. Experimental Biology and Medicine, v. 242, p. 333-343, 2017. Disponível em: <http://journals.sagepub.com/doi/pdf/10.1177/1535370216672749>. Acesso em: 15 set. 2017.