Memetic self-adaptive evolution strategies applied to the maximum diversity problem.

dc.contributor.authorFreitas, Alan Robert Resende de
dc.contributor.authorGuimarães, Frederico Gadelha
dc.contributor.authorSilva, Rodrigo César Pedrosa
dc.contributor.authorSouza, Marcone Jamilson Freitas
dc.date.accessioned2017-02-21T16:35:38Z
dc.date.available2017-02-21T16:35:38Z
dc.date.issued2014
dc.description.abstractThe maximum diversity problem consists in finding a subset of elements which have maximum diversity between each other. It is a very important problem due to its general aspect, that implies many practical applications such as facility location, genetics, and product design. We propose a method based on evolution strategies with local search and self-adaptation of the parameters. For all time limits from 1 to 300 s as well as for time to converge to the best solutions known, this method leads to better results when compared to other state-of-the-art algorithms.pt_BR
dc.identifier.citationFREITAS, A. R. R. de et al. Memetic self-adaptive evolution strategies applied to the maximum diversity problem. Optimization Letters, v. 8, n. 2, p. 705-714, fev. 2014. Disponível em: <http://link.springer.com/article/10.1007/s11590-013-0610-0>. Acesso em: 15 fev. 2017.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s11590-013-0610-0
dc.identifier.issn1862-4480
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/7290
dc.identifier.uri2http://link.springer.com/article/10.1007/s11590-013-0610-0pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectMetaheuristicspt_BR
dc.subjectEvolutionary algorithmspt_BR
dc.titleMemetic self-adaptive evolution strategies applied to the maximum diversity problem.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_MemeticSelfAdaptive.pdf
Size:
437.03 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
924 B
Format:
Item-specific license agreed upon to submission
Description: