Nanostructured systems improve the antimicrobial potential of the essential oil from cymbopogon densiflorus leaves.

dc.contributor.authorSeibert, Janaína Brandão
dc.contributor.authorRosa, Juliana dos Santos
dc.contributor.authorAlmeida, Tamires Cunha
dc.contributor.authorAmparo, Tatiane Roquete
dc.contributor.authorRodrigues, Ivanildes Vasconcelos
dc.contributor.authorLanza, Juliane Sousa
dc.contributor.authorFrezard, Frederic Jean Georges
dc.contributor.authorSoares, Rodrigo Dian de Oliveira Aguiar
dc.contributor.authorTeixeira, Luiz Fernando de Medeiros
dc.contributor.authorSouza, Gustavo Henrique Bianco de
dc.contributor.authorVieira, Paula Melo de Abreu
dc.contributor.authorBarichello, José Mario
dc.contributor.authorSantos, Orlando David Henrique dos
dc.date.accessioned2020-04-27T14:10:00Z
dc.date.available2020-04-27T14:10:00Z
dc.date.issued2019
dc.description.abstractThe physicochemical characteristics of nanostructured suspensions are important prerequisites for the success of new drug development. This work aimed to develop nanometric systems containing Cymbopogon densiflorus leaf essential oil and to evaluate their antimicrobial activity. The essential oil was isolated by hydrodistillation from leaves and analyzed by GC-MS. The main constituents were found to be trans-p-mentha-2,8-dien-1-ol, cis-p-mentha2,8-dien-1-ol, trans-p-mentha-1(7),8-dien-2-ol, cis-piperitol, and cis-p-mentha-1(7),8-dien-2-ol. In silico prediction analysis suggested that this oil possesses antimicrobial potential and the main mechanism of action might be the peptidoglycan glycosyltransferase inhibition. Nanoemulsions were prepared by the phase inversion method, and liposomes were made by the film hydration method. Qualitative evaluation of the antimicrobial activity was performed by the diffusion disk assay with 24 microorganisms; all of them were found to be sensitive to the essential oil. Subsequently, this property was quantified by the serial microdilution technique, where the nanoformulations demonstrated improved activity in comparison with the free oil. Bactericidal action was tested by the propidium iodide method, which revealed that free essential oil and nanoemulsion increased cytoplasmic membrane permeability, while no difference was observed between negative control and liposome. These results were confirmed by images obtained using transmission electron microscopy. This study has shown an optimization in the antimicrobial activity of C. densiflorus essential oil by a nanoemulsion and a liposomal formulation of the active substances.pt_BR
dc.identifier.citationSEIBERT, J. B. et al. Nanostructured systems improve the antimicrobial potential of the essential oil from cymbopogon densiflorus leaves. Journal of Natural Products, v. 82, n. 12, p.3208-3220, dez. 2019. Disponível em: <https://pubs.acs.org/doi/abs/10.1021/acs.jnatprod.8b00870>. Acesso em: 10 fev. 2020.pt_BR
dc.identifier.doihttps://doi.org/10.1021/acs.jnatprod.8b00870pt_BR
dc.identifier.issn0163-3864
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/12107
dc.identifier.uri2https://pubs.acs.org/doi/abs/10.1021/acs.jnatprod.8b00870pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.titleNanostructured systems improve the antimicrobial potential of the essential oil from cymbopogon densiflorus leaves.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_NanostructuredSystemImprove.pdf
Size:
4.61 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
924 B
Format:
Item-specific license agreed upon to submission
Description: