Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN.

dc.contributor.authorOliveira, Riva de Paula
dc.contributor.authorAbate, Jess Porter
dc.contributor.authorDilks, Kieran
dc.contributor.authorLandis, Jessica
dc.contributor.authorAshraf, Jasmine
dc.contributor.authorMurphy, Coleen T.
dc.contributor.authorBlackwell, T. Keith
dc.date.accessioned2017-08-11T12:47:06Z
dc.date.available2017-08-11T12:47:06Z
dc.date.issued2009
dc.description.abstractStudies in model organisms have identified regulatory processes that profoundly influence aging, many of which modulate resistance against environmental or metabolic stresses. In Caenorhabditis elegans, the transcription regulator SKN-1 is important for oxidative stress resistance and acts in multiple longevity pathways. SKN-1 is the ortholog of mammalian Nrf proteins, which induce Phase 2 detoxification genes in response to stress. Phase 2 enzymes defend against oxygen radicals and conjugate electrophiles that are produced by Phase 1 detoxification enzymes, which metabolize lipophilic compounds. Here, we have used expression profiling to identify genes and processes that are regulated by SKN-1 under normal and stress–response conditions. Under nonstressed conditions SKN-1 upregulates numerous genes involved in detoxification, cellular repair, and other functions, and downregulates a set of genes that reduce stress resistance and lifespan. Many of these genes appear to be direct SKN-1 targets, based upon presence of predicted SKN-binding sites in their promoters. The metalloid sodium arsenite induces skn-1-dependent activation of certain detoxification gene groups, including some that were not SKN-1- upregulated under normal conditions. An organic peroxide also triggers induction of a discrete Phase 2 gene set, but additionally stimulates a broad SKN-1-independent response. We conclude that under normal conditions SKN-1 has a wide range of functions in detoxification and other processes, including modulating mechanisms that reduce lifespan. In response to stress, SKN-1 and other regulators tailor transcription programs to meet the challenge at hand. Our findings reveal striking complexity in SKN-1 functions and the regulation of systemic detoxification defenses.pt_BR
dc.identifier.citationOLIVEIRA, R. de P. et al. Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN. Aging Cell, v. 8, p. 524-541, 2009. Disponível em: <http://onlinelibrary.wiley.com/doi/10.1111/j.1474-9726.2009.00501.x/abstract>. Acesso em: 20 de jul. 2017.pt_BR
dc.identifier.doihttps://doi.org/10.1111/j.1474-9726.2009.00501.x
dc.identifier.issn1474-9726
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/8525
dc.identifier.uri2http://onlinelibrary.wiley.com/doi/10.1111/j.1474-9726.2009.00501.x/abstractpt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectAgingpt_BR
dc.subjectCaenorhabditis eleganspt_BR
dc.subjectInsulin signalingpt_BR
dc.subjectDetoxificationpt_BR
dc.titleCondition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_ConditionAdaptedStress.pdf
Size:
1004.03 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
924 B
Format:
Item-specific license agreed upon to submission
Description: