Controle por aprendizagem por reforço aplicado aos processos : CSTR e Espessador.

No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
O controle por aprendizagem por reforço busca melhorar seu desempenho pelo aprendizado obtido ao interagir com o processo. As ações de controle deste tipo de controlador são norteadas unicamente por uma função de recompensa. O algoritmo Augmented Random Search (ARS) é uma método de aprendizagem por reforço baseado em busca aleatória simples com melhorias no processamento das recompensas e dos estados. As características apresentadas pela aprendizagem por reforço permitirá sua utilização em processos complexos e não lineares, como o tanque com agitação contínua (CSTR) e o espessador. Esses dois processos são complexos e apresentam comportamentos diferentes nos pontos de operação. Para o problema do CSTR, os estados são as referências do processo (referência atual e uma mudança de referência), as ações são os parâmetros do controlador PI e a recompensa foi definida em função do erro entre a referência e variável do processo (temperatura do reator). No caso do espessador os estados são o erro e a concentração do underflow, a ação é o ajuste direto da vazão de underflow e a função de recompensa foi definida em função do erro e da variação da ação de controle. Para o simulador do CSTR foi utilizado o python e para o espessador, utilizamos o Matlab. A sintonia proposta pelo ARS para o problema do CSTR apresenta uma melhoria de 8,3% (IAE), considerando o mesmo ponto de operação, em comparação com o benchmark. Já o o algoritmo ARS foi 19% (IAE) melhor na tarefa de controlar diretamente o espessador.
Description
Programa de Pós-Graduação em Instrumentação, Controle e Automação de Processos de Mineração. Departamento de Engenharia de Controle e Automação, Escola de Minas, Universidade Federal de Ouro Preto.
Keywords
Minas e mineração, Inteligência artificial, Controle automático - controle avançado, Aprendizagem por reforço, Reator de Tanque com Agitação Contínua
Citation
BITARÃES, Santino Martins. Controle por aprendizagem por reforço aplicado aos processos: CSTR e Espessador. 2022. 50 f. Dissertação (Mestrado Profissional em Instrumentação, Controle e Automação de Processos de Mineração) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2020.