Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems.
dc.contributor.author | Ercole, Grey | |
dc.contributor.author | Pereira, Gilberto de Assis | |
dc.contributor.author | Sanchis, Remy de Paiva | |
dc.date.accessioned | 2023-02-03T20:53:22Z | |
dc.date.available | 2023-02-03T20:53:22Z | |
dc.date.issued | 2019 | pt_BR |
dc.description.abstract | Let be a smooth, bounded domain of RN , ω be a positive, L1-normalized function, and 0 < s < 1 < p. We study the asymptotic behavior, as p → ∞, of the pair p p, u p, where p is the best constant C in the Sobolev-type inequality C exp (log |u| p)ωdx ≤ [u] p s,p ∀ u ∈ Ws,p 0 () and u p is the positive, suitably normalized extremal function corresponding to p. We show that the limit pairs are closely related to the problem of minimizing the quotient |u|s / exp (log |u|)ωdx , where |u|s denotes the s-Hölder seminorm of a function u ∈ C0,s 0 (). | pt_BR |
dc.identifier.citation | ERCOLE, G.; PEREIRA, G. de A.; SANCHIS, R de P. Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems. Annali di Matematica Pura ed Applicata, v. 198, p. 2059-2079, 2019. Disponível em: <https://link.springer.com/article/10.1007/s10231-019-00854-9>. Acesso em: 06 jul. 2022. | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s10231-019-00854-9 | pt_BR |
dc.identifier.issn | 1618-1891 | |
dc.identifier.uri | http://www.repositorio.ufop.br/jspui/handle/123456789/16104 | |
dc.identifier.uri2 | https://link.springer.com/article/10.1007/s10231-019-00854-9 | pt_BR |
dc.language.iso | en_US | pt_BR |
dc.rights | restrito | pt_BR |
dc.subject | p-Laplacian | pt_BR |
dc.subject | Viscosity solution | pt_BR |
dc.title | Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems. | pt_BR |
dc.type | Artigo publicado em periodico | pt_BR |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ARTIGO_AsymptoticBehaviorExtremals.pdf
- Size:
- 374.97 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: