Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems.

dc.contributor.authorErcole, Grey
dc.contributor.authorPereira, Gilberto de Assis
dc.contributor.authorSanchis, Remy de Paiva
dc.date.accessioned2023-02-03T20:53:22Z
dc.date.available2023-02-03T20:53:22Z
dc.date.issued2019pt_BR
dc.description.abstractLet be a smooth, bounded domain of RN , ω be a positive, L1-normalized function, and 0 < s < 1 < p. We study the asymptotic behavior, as p → ∞, of the pair p p, u p, where p is the best constant C in the Sobolev-type inequality C exp (log |u| p)ωdx ≤ [u] p s,p ∀ u ∈ Ws,p 0 () and u p is the positive, suitably normalized extremal function corresponding to p. We show that the limit pairs are closely related to the problem of minimizing the quotient |u|s / exp (log |u|)ωdx , where |u|s denotes the s-Hölder seminorm of a function u ∈ C0,s 0 ().pt_BR
dc.identifier.citationERCOLE, G.; PEREIRA, G. de A.; SANCHIS, R de P. Asymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems. Annali di Matematica Pura ed Applicata, v. 198, p. 2059-2079, 2019. Disponível em: <https://link.springer.com/article/10.1007/s10231-019-00854-9>. Acesso em: 06 jul. 2022.pt_BR
dc.identifier.doihttps://doi.org/10.1007/s10231-019-00854-9pt_BR
dc.identifier.issn1618-1891
dc.identifier.urihttp://www.repositorio.ufop.br/jspui/handle/123456789/16104
dc.identifier.uri2https://link.springer.com/article/10.1007/s10231-019-00854-9pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectp-Laplacianpt_BR
dc.subjectViscosity solutionpt_BR
dc.titleAsymptotic behavior of extremals for fractional Sobolev inequalities associated with singular problems.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_AsymptoticBehaviorExtremals.pdf
Size:
374.97 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: