Potential bioinoculants for sustainable agriculture prospected from ferruginous caves of the Iron Quadrangle/Brazil.
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Biocontrol and plant growth-promoting bacteria (PGPB) are important agricultural bioinoc-
ulants. This study aimed to prospect new potential bioinoculants for a more sustainable agriculture
from ferruginous caves of the Brazilian Iron Quadrangle. Culturable bacteria, from seven caves and
one canga soil sample, were evaluated for biocontroller activity of the phytopathogens Xanthomonas
citri subsp. Citri—Xcc306 (citrus canker), Fusarium oxysporum—Fo (fusariosis), and Colletotrichum
lindemuthianum—Cl89 (bean anthracnose). The ability of the superior candidates to solubilize inor-
ganic phosphate, fix nitrogen, and produce hydrolytic enzymes and siderophores was then analyzed.
Out of 563 isolates, 47 inhibited the growth of Xcc306 in vitro, of which 9 reduced citrus canker
up to 68% when co-inoculated with the pathogen on host plants. Twenty of the 47 inhibited Fo
growth directly by 51–73%, and 15 indirectly by 75–81%. These 15 inhibited Cl89 growth in vitro
(up to 93% directly and 100% indirectly), fixed nitrogen, produced proteases and siderophores,
showed motility ability, produced biofilm, and all but one solubilized inorganic phosphate. Therefore,
15 (2.66%) bacterial isolates, from the genera Serratia, Nissabacter, and Dickeya, act simultaneously as
biocontrollers and PGPBs, and could be important candidates for future investigations in planta as an
alternative to minimize the use of pesticides and chemical fertilizers through sustainable agricultural
management practices.
Description
Keywords
Plant growth promoters, Bacterial prospecting
Citation
LEMES, C. G. de C. et al. Potential bioinoculants for sustainable agriculture prospected from ferruginous caves of the Iron Quadrangle/Brazil. Sustainability, v. 13, artigo 9354, 2021. Disponível em: <https://doi.org/10.3390/su13169354>. Acesso em: 11 out. 2022.