Influence of synthesis conditions on the production of molecularly imprinted polymers for the selective recovery of isovaleric acid from anaerobic effluents.

dc.contributor.authorTonucci, Marina Caldeira
dc.contributor.authorFidélis, Ana Luíza S.
dc.contributor.authorBaeta, Bruno Eduardo Lobo
dc.contributor.authorTarley, César Ricardo Teixeira
dc.contributor.authorAquino, Sergio Francisco de
dc.date.accessioned2019-05-03T14:32:09Z
dc.date.available2019-05-03T14:32:09Z
dc.date.issued2018
dc.description.abstractTwo molecularly imprinted polymers (MIPs) – poly(methacrylic acid‐co‐TRIM) (TRIM, trimethylolpropanetrimethacrylate) and poly(acylamide‐co‐TRIM) – were synthesized in different solvents for the selective recovery of isovaleric acid (template) generated during the anaerobic digestion process. The chemical and structural characterizations of the synthetic adsorbent were carried out by Fourier transform infrared spectroscopy, TGA and porosimetry through N2 adsorption–desorption isotherms. The selective and adsorptive performances of the imprinted polymers were evaluated by kinetic, isothermal, thermodynamic and selectivity studies and by adsorbent reuse experiments. The poly(methacrylic acid‐co‐TRIM) synthesized with dimethyl sulfoxide:chloroform presented higher selectivity and adsorption capacity for isovaleric acid in the presence of six volatile fatty acids. The kinetic results were well adjusted to the pseudo‐nth order and intraparticle diffusion models, leading to k values of 10−4 and 6 × 10−5 for the best synthesis of MIPs and not‐imprinted polymers, respectively. Moreover, the Sips model best described the adsorption isotherm and generated a maximum adsorption capacity of ca 209 mg g−1 (at 25 °C). Cycles of MIP use–desorption–reuse indicated that the selective adsorbent performed better than commercial adsorbents, losing less than 3% of adsorption capacity after three cycles.pt_BR
dc.identifier.citationTONUCCI, M. C. et al. Influence of synthesis conditions on the production of molecularly imprinted polymers for the selective recovery of isovaleric acid from anaerobic effluents. Polymer International, v. 68, n. 3, p. 428-438, mar. 2019. Disponível em: <https://onlinelibrary.wiley.com/doi/full/10.1002/pi.5726>. Acesso em: 7 mar. 2019.pt_BR
dc.identifier.doihttps://doi.org/10.1002/pi.5726pt_BR
dc.identifier.issn1097-0126
dc.identifier.urihttp://www.repositorio.ufop.br/handle/123456789/11176
dc.identifier.uri2https://onlinelibrary.wiley.com/doi/abs/10.1002/pi.5726pt_BR
dc.language.isoen_USpt_BR
dc.rightsrestritopt_BR
dc.subjectSelective adsorptionpt_BR
dc.subjectVolatile fatty acidspt_BR
dc.subjectAnaerobic digestionpt_BR
dc.subjectBiorefinerypt_BR
dc.titleInfluence of synthesis conditions on the production of molecularly imprinted polymers for the selective recovery of isovaleric acid from anaerobic effluents.pt_BR
dc.typeArtigo publicado em periodicopt_BR
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ARTIGO_InfluenceSynthesisConditions.pdf
Size:
742.22 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
924 B
Format:
Item-specific license agreed upon to submission
Description: