Bacharel, Rafael de FreitasSouza, Marcone Jamilson FreitasCota, Luciano Perdigão2023-07-262023-07-262022BACHAREL, R. de F.; SOUZA, M. J. F.; COTA, L. P. Product sequencing and blending of raw materials to feed arc furnaces: a decision support system for a mining-metallurgical industry. Journal of Control, Automation and Electrical Systems, v. 33, p. 1091–1102, 2022. Disponível em: <https://link.springer.com/article/10.1007/s40313-021-00837-3>. Acesso em: 06 jul. 2023.2195-3899http://www.repositorio.ufop.br/jspui/handle/123456789/17069A large amount of data available today and the complex situations present in the industry make decision support systems increasingly necessary. This work deals with a problem of a mining-metallurgical industry in which the production of products used to feed arc furnaces must be sequenced in work shifts. There is a due date and a quality specification for each product. These products are generated from raw materials available in a set of silos and must satisfy the required quality specifications. The aim is to minimize the total production time and the total tardiness. To solve it, we developed a decision support system that applies a matheuristic algorithm to do the product schedule and determine the amount of raw material to produce each product. In the proposed algorithm, the products generated in each work shift are chosen through a dispatch heuristic rule based on the shortest production time. In turn, the amount of raw material to be used is calculated by solving a goal linear programming formulation of a blending problem. We generate instances that simulate real cases to evaluate the developed algorithm. The results show a good performance of the proposed algorithm, validating its use as a tool to support decision-making.en-USrestritoHeuristicOperations research in industryProduct sequencing and blending of raw materials to feed arc furnaces : a decision support system for a mining-metallurgical industry.Artigo publicado em periodicohttps://doi.org/10.1007/s40313-021-00837-3