Lage, Vinícius NunesRêgo Segundo, Alan KardekPinto, Thomás Vargas Barsante e2017-11-292017-11-292016LAGE, V. N.; RÊGO SEGUNDO, A. K.; PINTO, T. V. B. e. Mathematical modelling of a two degree of freedom platform using accelerometers and gyro sensors. Journal of Mechanics Engineering and Automation, v. 6, p. 427-433, 2016. Disponível em: <http://www.davidpublisher.org/index.php/Home/Article/index?id=30066.html>. Acesso em: 29 set. 2017.2163-2413http://www.repositorio.ufop.br/handle/123456789/9189This paper demonstrates the assembly of a servo-controlled platform with two degrees of freedom, empirical methods and a developed closed-loop control found in the system mathematical model. This control aims to stabilize and hold small objects on the platform. We parsed the step response in X and Y axes, hence we found the first and second-order models for each one. We did some further analyses to decide which one would better represent the behavior of the system. The MATLAB software provided step response for the model empirically obtained and latter compared it to experimental data acquired in the trials. Accelerometers and gyro sensors from the MPU-6050 sensor measured the angular position of platform on X and Y axes. In order to improve measurements accuracy and eliminate noise effects, we implemented the complementary filter to the firmware system. We used Arduino to control servomotors through PWM pulses and perform data acquisition.en-USrestritoBalanced platformComplementary filterArduinoMathematical modelling of a two degree of freedom platform using accelerometers and gyro sensors.Artigo publicado em periodicoOs trabalhos publicados no periódico Journal of Mechanics Engineering and Automation estão sob Licença Creative Commons que permite copiar, distribuir e transmitir o trabalho desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais nem a adaptação. Fonte: Journal of Mechanics Engineering and Automation <http://www.davidpublisher.org/Home/Journal/JMEA>. Acesso em: 20 fev. 2020.https://doi.org/10.17265/2159-5275/2016.08.006