Browsing by Author "Fonseca, Carolina Rodrigues"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item An approach via generating functions to compute power indices of multiple weighted voting games with incompatible players.(2019) Francisco Neto, Antônio; Fonseca, Carolina RodriguesWe introduce a new generating function based method to compute the Banzhaf, Deegan– Packel, Public Good (a.k.a. the Holler power index) and Shapley–Shubik power indices in the presence of incompatibility among players. More precisely, given a graph G = (V, E) with V the set of players and E the edge set, our extension involves multiple weighted voting games (MWVG’s) and incompatible players, i.e., pairs of players belonging to E are not allowed to cooperate. The route to obtain the aforementioned generating functions comprises the use of a key lemma characterizing the set of minimal winning coalitions of the game with incompatibility due to Alonso-Meijide et al. (Appl Math Comput 252(1):377– 387, 2015), a tool from combinatorial analysis, namely, the Omega calculus in partition analysis, and basic tools borrowed from commutative algebra involving the computation of certain quotients of polynomial rings module polynomial ideals. Using partition analysis, we obtain new generating functions to compute the Deegan–Packel and Public Good power indices with incompatibility leading to lower time complexity than previous results of Chessa (TOP 22(2):658–673, 2014) and some results of Alonso-Meijide et al. (Appl Math Comput 219(8):3395–3402, 2012). Using a conjunction of partition analysis and commutative algebra, we extend to MWVG’s the generating function approach to compute the Banzhaf and Shapley–Shubik power indices in the presence of incompatibility. Finally, an example taken from the real-world, i.e., the European Union under the Lisbon Treaty, is used to illustrate the usefulness of the Omega package, a symbolic computational package that implements the Omega calculus in Mathematica, due to Andrews et al. (Eur J Comb 22(7):887–904, 2001) in the context of MWVG’s by computing the PG power index of the associated voting game.Item Índices de poder para jogos de votação com peso na presença de incompatibilidade entre os jogadores.(2018) Fonseca, Carolina Rodrigues; Francisco Neto, Antônio; Francisco Neto, Antônio; Oliveira, Adélcio Carlos de; Barrenechea, Martin Harry VargasNeste trabalho, apresentamos uma nova abordagem algébrica-combinatória para analisar certos aspectos dos Jogos de Votação com Peso (JVP). Nosso primeiro resultado, compreende um método baseado em função geratriz para calcular os índices de poder de Shapley-Shubik e Banzhaf em JVP com jogadores incompatíveis, ou seja, os jogadores que estão conectados por elos em um grafo não podem cooperar. Nosso método é baseado em coalizões vencedoras mínimas e usa função geratriz definida em certos quocientes polinomiais de módulos de ideais de anéis polinomiais. O método é suficientemente geral para incluir Jogos de Votação com Peso Múltiplos (JVPM). Usando a função geratriz para os polinômios simétricos elementares, mostramos que nossa abordagem unifica trabalhos anteriores sobre o cálculo dos índices de Banzhaf e Shapley para JVP em termos de coalizões vencedoras mínimas. Nosso segundo resultado, compreende o uso da análise de partição, mais precisamente o cálculo Omega de MacMahon, para construir função geratriz que, para um determinado conjunto prescrito de coalizões vencedoras mínimas, constrói todos os JVPM associados. Isto é de especial relevância para a construção de jogos de votação com ou sem jogadores incompatíveis. Terminamos este trabalho com um estudo de caso a cerca da distribuição de poderes nas capitais dos estados brasileiros para estimar o índice de poder regional dos dois últimos partidos correspondentes aos dois últimos presidentes, i.e., PT e MDB.