Browsing by Author "Ribeiro, Isabela"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Benznidazole and Posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments.(2013) Diniz, Lívia de Figueiredo; Urbina, Julio Alberto; Andrade, Isabel Mayer de; Mazzeti, Ana Lia; Martins, Tassiane Assíria Fontes; Caldas, Ivo Santana; Silva, André Talvani Pedrosa da; Ribeiro, Isabela; Bahia, Maria TerezinhaBackground: Current chemotherapy for Chagas disease is unsatisfactory due to its limited efficacy, particularly in the chronic phase, with frequent side effects that can lead to treatment discontinuation. Combined therapy is envisioned as an ideal approach since it may improve treatment efficacy whilst decreasing toxicity and the likelihood of resistance development. We evaluated the efficacy of posaconazole in combination with benznidazole on Trypanosoma cruzi infection in vivo. Methods and Findings: Benznidazole and posaconazole were administered individually or in combination in an experimental acute murine infection model. Using a rapid treatment protocol for 7 days, the combined treatments were more efficacious in reducing parasitemia levels than the drugs given alone, with the effects most evident in combinations of sub-optimal doses of the drugs. Subsequently, the curative action of these drug combinations was investigated, using the same infection model and 25, 50, 75 or 100 mg/kg/day (mpk) of benznidazole in combination with 5, 10 or 20 mpk of posaconazole, given alone or concomitantly for 20 days. The effects of the combination treatments on parasitological cures were higher than the sum of such effects when the drugs were administered separately at the same doses, indicating synergistic activity. Finally, sequential therapy experiments were carried out with benznidazole or posaconazole over a short interval (10 days), followed by the second drug administered for the same period of time. It was found that the sequence of benznidazole (100 mpk) followed by posaconazole (20 mpk) provided cure rates comparable to those obtained with the full (20 days) treatments with either drug alone, and no cure was observed for the short treatments with drugs given alone. Conclusions: Our data demonstrate the importance of investigating the potential beneficial effects of combination treatments with marketed compounds, and showed that combinations of benznidazole with posaconazole have a positive interaction in murine models of Chagas disease.Item Benznidazole/Itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease.(2015) Martins, Tassiane Assíria Fontes; Diniz, Lívia de Figueiredo; Mazzeti, Ana Lia; Nascimento, Álvaro Fernando da Silva do; Caldas, Sérgio; Caldas, Ivo Santana; Andrade, Isabel Mayer de; Ribeiro, Isabela; Bahia, Maria TerezinhaThe nitroheterocyclic drugs nifurtimox and benznidazole are first-line drugs available to treat Chagas disease; however, they have limitations, including long treatment courses and toxicity. Strategies to overcome these limitations include the identification of new drugs with specific target profiles, re-dosing regimens for the current drugs, drug repositioning and combination therapy. In this work, we evaluated combination therapy as an approach for optimization of the current therapeutic regimen for Chagas disease. The curative action of benznidazole/itraconazole combinations was explored in an established infection of the mice model with the T. cruzi Y strain. The activities of the benznidazole/itraconazole combinations were compared with the results from those receiving the same dosage of each individual drug. The administration of benznidazole/itraconazole in combination eliminated parasites from the blood more efficiently than each drug alone. Here, there was a significant reduction of the number of treatment days (number of doses) necessary to induce parasitemia suppression with the benznidazole/itraconazole combination, as compared to each compound administered alone. These results clearly indicate the enhanced effects of these drugs in combination, particularly at the dose of 75 mg/kg, as the effects observed with the drug combinations were four times more effective than those of each drug used alone. Moreover, benznidazole/itraconazole treatment was shown to prevent or decrease the typical lesions associated with chronic experimental Chagas disease, as illustrated by similar levels of inflammatory cells and fibrosis in the cardiac muscle tissue of healthy and treated mice. These results emphasize the importance of exploring the potential of combination treatments with currently available compounds to specifically treat Chagas disease.Item Fexinidazole : a potential new drug candidate for Chagas disease.(2012) Bahia, Maria Terezinha; Andrade, Isabel Mayer de; Martins, Tassiane Assíria Fontes; Nascimento, Álvaro Fernando da Silva do; Diniz, Lívia de Figueiredo; Caldas, Ivo Santana; Silva, André Talvani Pedrosa da; Trunz, Bernadette Bourdin; Torreele, Els; Ribeiro, IsabelaBackground: New safe and effective treatments for Chagas disease (CD) are urgently needed. Current chemotherapy options for CD have significant limitations, including failure to uniformly achieve parasitological cure or prevent the chronic phase of CD, and safety and tolerability concerns. Fexinidazole, a 2-subsituted 5-nitroimidazole drug candidate rediscovered following extensive compound mining by the Drugs for Neglected Diseases initiative and currently in Phase I clinical study for the treatment of human African trypanosomiasis, was evaluated in experimental models of acute and chronic CD caused by different strains of Trypanosoma cruzi. Methods and Findings: We investigated the in vivo activity of fexinidazole against T. cruzi, using mice as hosts. The T. cruzi strains used in the study were previously characterized in murine models as susceptible (CL strain), partially resistant (Y strain), and resistant (Colombian and VL-10 strains) to the drugs currently in clinical use, benznidazole and nifurtimox. Our results demonstrated that fexinidazole was effective in suppressing parasitemia and preventing death in infected animals for all strains tested. In addition, assessment of definitive parasite clearance (cure) through parasitological, PCR, and serological methods showed cure rates of 80.0% against CL and Y strains, 88.9% against VL-10 strain, and 77.8% against Colombian strain among animals treated during acute phase, and 70% (VL-10 strain) in those treated in chronic phase. Benznidazole had a similar effect against susceptible and partially resistant T. cruzi strains. Fexinidazole treatment was also shown to reduce myocarditis in all animals infected with VL-10 or Colombian resistant T. cruzi strains, although parasite eradication was not achieved in all treated animals at the tested doses. Conclusions: Fexinidazole is an effective oral treatment of acute and chronic experimental CD caused by benznidazolesusceptible, partially resistant, and resistant T. cruzi. These findings illustrate the potential of fexinidazole as a drug candidate for the treatment of human CD.Item In vitro and in vivo experimental models for drug screening and development for Chagas disease.(2010) Romanha, Alvaro José; Castro, Solange Lisboa de; Soeiro, Maria de Nazaré Correia; Vieira, Joseli Lannes; Ribeiro, Isabela; Silva, André Talvani Pedrosa da; Bourdin, Bernadette; Blum, Bethania; Olivieri, Bianca; Zani, Carlos Leomar; Spadafora, Carmenza; Chiari, Egler; Chatelain, Eric; Chaves, Gabriela; Calzada, José Eduardo; Bustamante, Juan Manuel; Freitas Junior, Lucio Holanda Godim de; Romero, Luz I.; Bahia, Maria Terezinha; Lotrowska, Michel; Soares, Milena Botelho Pereira; Andrade, Sonia Gumes; Lotrowska, Tanya; Degrave, Wim; Andrade, Zilton de AraújoChagas disease, a neglected illness, affects nearly 12-14 million people in endemic areas of Latin America. Al¬though the occurrence of acute cases sharply has declined due to Southern Cone Initiative efforts to control vector transmission, there still remain serious challenges, including the maintenance of sustainable public policies for Chagas disease control and the urgent need for better drugs to treat chagasic patients. Since the introduction of benznidazole and nifurtimox approximately 40 years ago, many natural and synthetic compounds have been as¬sayed against Trypanosoma cruzi, yet only a few compounds have advanced to clinical trials. This reflects, at least in part, the lack of consensus regarding appropriate in vitro and in vivo screening protocols as well as the lack of biomarkers for treating parasitaemia. The development of more effective drugs requires (i) the identification and validation of parasite targets, (ii) compounds to be screened against the targets or the whole parasite and (iii) a panel of minimum standardised procedures to advance leading compounds to clinical trials. This third aim was the topic of the workshop entitled Experimental Models in Drug Screening and Development for Chagas Disease, held in Rio de Janeiro, Brazil, on the 25th and 26th of November 2008 by the Fiocruz Program for Research and Technological Development on Chagas Disease and Drugs for Neglected Diseases Initiative. During the meeting, the minimum steps, requirements and decision gates for the determination of the efficacy of novel drugs for T. cruzi control were evaluated by interdisciplinary experts and an in vitro and in vivo flowchart was designed to serve as a general and standardised protocol for screening potential drugs for the treatment of Chagas disease.Item Outcome of E1224-Benznidazole combination treatment for infection with a multidrug-resistant Trypanosoma cruzi strain in mice.(2018) Diniz, Lívia de Figueiredo; Mazzeti, Ana Lia; Caldas, Ivo Santana; Ribeiro, Isabela; Bahia, Maria TerezinhaCombination therapy has been proposed as an alternative therapeutic approach for the treatment of Chagas disease. In this study, we evaluated the effect of treatment with benznidazole combined with E1224 (ravuconazole prodrug) in an experimental murine model of acute infection. The first set of experiments assessed the range of E1224 doses required to induce parasitological cure using Trypanosoma cruzi strains with different susceptibilities to benznidazole (Y and Colombian). All E1224 doses were effective in suppressing the parasitemia and preventing death; however, parasitological cure was observed only in mice infected with Y strain. Considering these results, we evaluated the effect of combined treatment against Colombian, a multidrug-resistant T. cruzi strain. After exclusion of antagonistic effects using in vitro assays, infected mice were treated with E1224 and benznidazole in monotherapy or in combination at day 4 or 10 postinoculation. All treatments were well tolerated and effective in suppressing parasitemia; however, parasitological and PCR assays indicated no cure among mice treated with monotherapies. Intriguingly, the outcome of combination therapy was dependent on treatment onset. Early treatment using optimal doses of E1224-benznidazole induced a 100% cure rate, but this association could not eliminate a well-established infection. The beneficial effect of combination therapy was evidenced by further reductions of the patent parasitemia period in the group receiving combined therapy compared with monotherapies. Our results demonstrated a positive interaction between E1224 and benznidazole against murine T. cruzi infection using a multidrug-resistant strain and highlighted the importance of a stringent experimental model in the evaluation of new therapies.Item Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection.(2012) Caldas, Sérgio; Caldas, Ivo Santana; Diniz, Lívia de Figueiredo; Lima, Wanderson Geraldo de; Oliveira, Riva de Paula; Cecílio, Alzira Batista; Ribeiro, Isabela; Silva, André Talvani Pedrosa da; Bahia, Maria TerezinhaThe lack of an accurate diagnosis has been a serious obstacle to the advancement of the anti-Trypanosoma cruzi chemotherapy and long-term infection can result in different health risks to human. PCRs are alternative methods, more sensitive than conventional parasitological techniques, which due to their low sensitivities are considered unsuitable for these purposes. The aim of this study was to investigate a sensitive diagnostic strategy to quantify blood and cardiac tissues parasites based on real-time PCR tools during acute and chronic phases of murine Chagas disease, as well as to monitor the evolution of infection in those mice under specific treatment. In parallel, fresh blood examination, immunological analysis and quantification of cardiac inflammation were also performed to confront and improve real-time PCR data. Similar profiles of parasitemia curves were observed in both quantification techniques during the acute phase of the infection. In contrast, parasites could be quantified only by real-time PCR at 60 and 120 days of infection. In cardiac tissue, real-time PCR detected T. cruzi DNA in 100% of infected mice, and using this tool a significant Pearson correlation between parasite load in peripheral blood and in cardiac tissue during acute and chronic phases was observed. Levels of serum CCL2, CCL5 and nitric oxide were coincident with parasite load but focal and diffuse mononuclear infiltrates was observed, even with significant (p < 0.05) reduction of parasitism after 60 days of infection. Later, this methodology was used to monitor the evolution of infection in animals treated with itraconazole (Itz). Itz-treatment induced a reduction of parasite load in both blood and cardiac muscle at the treatment period, but after the end of chemotherapy an increase of parasitism was detected. Interestingly, inflammatory mediators levels and heart inflammation intensity had similar evolution to the parasite load, in the group of animals treated. Taken together, our data show that real-time PCR strategy used was suitable for studies of murine T. cruzi infection and may prove useful in investigations involving experimental chemotherapy of the disease and the benefits of treatment in relation to parasitism and inflammatory responsItem Synergic effect of allopurinol in combination with nitro-heterocyclic compounds against Trypanosoma cruzi.(2019) Mazzeti, Ana Lia; Diniz, Lívia de Figueiredo; Gonçalves, Karolina Ribeiro; WonDollinger, Ruan Schott; Martins, Tassiane Assíria Fontes; Ribeiro, Isabela; Bahia, Maria TerezinhaCombination therapy has gained attention as a possible strategy for overcoming the limitations of the present therapeutic arsenal for Chagas disease. The aim of this study was to evaluate the effect of allopurinol in association with nitroheterocyclic compounds on infection with the Y strain of Trypanosoma cruzi. The in vitro effect of allopurinol plus benznidazole or nifurtimox on intracellular amastigotes in infected H9c2 cells was assessed in a 72-h assay. The interactions were classified as synergic for both allopurinol-nifurtimox (sums of fractional inhibitory concentrations [FICs] 0.49 0.08) and allopurinol-benznidazole (FICs 0.48 0.09). In the next step, infected Swiss mice were treated with allopurinol at 30, 60, and 90 mg/kg of body weight and with benznidazole at 25, 50, and 75 mg/kg in monotherapy and in combination at the same doses; as a reference treatment, another group of animals received benznidazole at 100 mg/kg. Allopurinol in monotherapy led to a smaller or nil effect in the reduction of parasite load and mortality rate. Treatment with benznidazole at suboptimal doses induced a transient suppression of parasitaemia with subsequent relapse in all animals treated with 25 and 50 mg/kg and in 80% of those that received 75 mg/kg. Administration of the drugs in combination significantly increased the cure rate to 60 to 100% among mice treated with benznidazole at 75 mg/kg plus 30, 60, or 90 mg/kg of allopurinol. These results show a positive interaction between allopurinol and benznidazole, and since both drugs are commercially available, their use in combination may be considered for the assessment in the treatment of Chagas disease patients.Item Therapeutic responses to different anti-Trypanosoma cruzi drugs in experimental infection by benznidazole-resistant parasite stock.(2014) Caldas, Sérgio; Caldas, Ivo Santana; Cecílio, Alzira Batista; Diniz, Lívia de Figueiredo; Silva, André Talvani Pedrosa da; Ribeiro, Isabela; Bahia, Maria Terezinhaupon mice infection with a benznidazole-resistant Trypanosoma cruzi strain in the pathological outcomes. Trypanosoma cruzi-infected mice were treated with different drugs and parasite clearance time was detected by blood and tissue qPCR, to determine the dynamic relationship between the efficacy of the treatments and the intensity of heart lesion/serum inflammatory mediators. Our results indicate that anti-T. cruzi treatments were able to reduce parasite replication and consequently induce immunomodulatory effects, where the degree of the immunopathology prevention was related to the time of parasite clearance induced by different treatments. Nevertheless, in benznidazole and posaconazole treatments, parasite rebounding was detected with parasitism reaching levels similar to infected and non-treated mice; the time for parasitic rebound being earlier among benznidazole-treated mice. In parallel, an increase of cardiac lesions and plasma chemokine levels was also detected and was more accentuated in benznidazole-treated animals. Interestingly, in the presence of parasitological cure (fexinidazole treatment), basal levels of these inflammatory mediators were evidenced as well as an absence of cardiac inflammation or fibrosis. Overall, our data indicate that all treatments have positive effects on the clinical evolution of T. cruzi infection, with success in preventing cardiac alterations being drug-dependent.Item Time and dose-dependence evaluation of nitroheterocyclic drugs for improving efficacy following Trypanosoma cruzi infection : a pre-clinical study.(2018) Mazzeti, Ana Lia; Diniz, Lívia de Figueiredo; Gonçalves, Karolina Ribeiro; Nascimento, Álvaro Fernando da Silva do; Spósito, Pollyanna Álvaro; Mosqueira, Vanessa Carla Furtado; Coelho, George Luiz Lins Machado; Ribeiro, Isabela; Bahia, Maria TerezinhaBenznidazole and nifurtimox-treatments regimens currently used in human are supported by very limited experimental data. This study was designed to evaluate the time and dose dependence for efficacy of the most important nitroheterocyclic drugs in use for Chagas disease. In order to evaluate time dependence, Y strain-infected mice received benznidazole for a total of 1, 3, 7, 10, 20, and 40 days. Treatment courses of 3–10-day were effective in clearing parasitaemia and suppressing mortality, but parasitological cure was not achieved. Extending the treatments to 20 or 40 days clearly improved benznidazole efficacy. The 20-day treatment induced cure in 57.1% of Y strain infections (partially drug resistant) but failed to cure Colombian strain infections (full drug resistant), while the 40-day treatment resulted in cure of 100% of Y and 50% of Colombian strain infected mice. The increased cure rates in T. cruzi infected animals that received nifurtimox for 40 days confirm the relationship between the length of treatment and efficacy. An improvement in efficacy was observed with increasing benznidazole doses; cure was verified in 28.6% (75 mg/kg), 57.1% (100 mg/kg) and 80% (300 mg/kg). Overall, these nonclinical study data provide evidence that the efficacy of benznidazole is dose and time dependent. These findings may be relevant for optimizing treatment of human Chagas disease.