Browsing by Author "Rodrigues, Bruno Mendes"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Existence and multiplicity of solutions for a supercritical elliptic problem in unbounded cylinders.(2017) Assunção, Ronaldo Brasileiro; Miyagaki, Olimpio Hiroshi; Rodrigues, Bruno MendesWe consider the following elliptic problem: – div( |∇u| p–2∇u |y| ap ) = |u| q–2u |y| bq + f(x) in , u = 0 on ∂, in an unbounded cylindrical domain := (y,z) ∈ Rm+1 × RN–m–1;0< A < |y| < B < ∞ , where 1 ≤ m < N – p, q = q(a, b) := Np N–p(a+1–b) , p > 1 and A, B ∈ R+. Let p∗ N,m := p(N–m) N–m–p . We show that p∗ N,m is the true critical exponent for this problem. The starting point for a variational approach to this problem is the known Maz’ja’s inequality (Sobolev Spaces, 1980) which guarantees, for the q previously defined, that the energy functional associated with this problem is well defined. This inequality generalizes the inequalities of Sobolev (p = 2, a = 0 and b = 0) and Hardy (p = 2, a = 0 and b = 1). Under certain conditions on the parameters a and b, using the principle of symmetric criticality and variational methods, we prove that the problem has at least one solution in the case f ≡ 0 and at least two solutions in the case f ≡ 0, if p < q < p∗ N,m.Item Existence and multiplicity results for an elliptic problem involving cylindrical weights and a homogeneous term μ.(2019) Assunção, Ronaldo Brasileiro; Miyagaki, Olimpio Hiroshi; Leme, Leandro Correia Paes; Rodrigues, Bruno MendesWe consider the following elliptic problem ⎧⎨ ⎩ − div |∇u| p−2 ∇u |y| ap = μ |u| p−2 u |y| p(a+1) + h(x) |u| q−2 u |y| bq + f(x, u) in Ω, u = 0 on ∂Ω, in an unbounded cylindrical domain Ω := {(y, z) ∈ Rm+1 × RN−m−1 ; 0 1, 1 ≤ mItem Existence of a positive solution for a class of non-local elliptic problem with critical growth in Rn.(2022) Leme, Leandro Correia Paes; Rodrigues, Bruno MendesIn this article, we consider the following non-local elliptic equation with critical growth ⎧⎪⎨⎪⎩− a + b RN |∇u| 2 dx p−1 2 Δu = λk(x)uq + u2∗−1, x ∈ RN , u ∈ D1,2(RN ), where N ≥ 3, λ > 0, 2∗:= 2N N−2 , 1 < p ≤ q < 2∗ − 1, a ≥ 0, b ≥ 0 and k(x) ∈ L 2∗ 2∗−q−1 (RN ) is a nonnegative function. Using variational methods and concentration-compactness principle, we obtain a positive solution.Item Multiplicity of positive solutions for the Kirchhoff-type equations with critical exponent in RN.(2018) Miyagaki, Olimpio Hiroshi; Leme, Leandro Correia Paes; Rodrigues, Bruno MendesIn this work we study the existence and multiplicity of solutions to the following Kirchhofftype problem with critical nonlinearity in RN ⎧⎨ ⎩ − ( a + b ∫ RN |∇u|pdx ) Δpu = μup∗−1 + λf (x, u); x ∈ RN , u ∈ D1,p(RN ), where N ≥ 2p, μ, λ, a, b > 0 and the nonlinearity f (x, u) satisfies certain subcritical growth conditions. By using topological and variational methods, infinitely many positive solutions are obtained.Item On a class of nonhomogeneous equations of Hénon-type : symmetry breaking and non radial solutions.(2017) Assunção, Ronaldo Brasileiro; Miyagaki, Olimpio Hiroshi; Pereira, Gilberto de Assis; Rodrigues, Bruno MendesIn this work we study the following Hénon-type equation ⎧⎪⎨ ⎪⎩ −div ( |∇u|p−2∇u |x|ap ) = |x|βf(u), in B; u > 0, in B; u = 0, on ∂B; where B := { x ∈ RN ; |x| < 1 } is a ball centered at the origin, the parameters verify the inequalities 0 ≤ a < N−p p , N ≥ 4, β > 0, 2 ≤ p < Np+pβ N−p(a+1) , and the nonlinearity f is nonhomogeneous. By minimization on the Nehari manifold, we prove that for large values of the parameter β there is a symmetry breaking and non radial solutions appear.Item Tópicos especiais de matrizes : isometrias no plano e no espaço.(2018) Morais, Lívia Silva de; Souza, Gil Fidelix de; Souza, Gil Fidelix de; Xavier, Sebastião Martins; Dias, Jeanne Carmo Amaral; Rodrigues, Bruno MendesEste trabalho apresenta o estudo das isometrias no plano e no espaço por meio de tópicos especiais de matrizes. Apresentamos os conceitos de espaços em Rn com maior ênfase em n = 2 ou n = 3. Conceitos de transformação linear, representação matricial de uma transformação linear, bases, autovalores e autovetores terão conexão com a geometria e a álgebra computacional, a fim de favorecer a conexão entre os estudos teóricos da álgebra linear com o cotidiano. Estudamos também a teoria básica de grupos, o grupo de isometria e o grupo a 1-parâmetro, além de descrever algebricamente curvas conhecidas como órbitas da ação dos subgrupos a 1-parâmetro de isometrias em pontos do espaço. A dissertação propõe um plano de aula que apresenta a ideia do pixel como aplicação dos tópicos de matrizes.