Mixed-integer linear programming based approaches for the resource constrained project scheduling problem.
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Resource Constrained Project Scheduling Problems (RCPSPs) without preemption are well-known NP-hard combinatorial optimization problems. A feasible RCPSP solution consists of a time-ordered schedule of jobs with corresponding execution modes, respecting precedence and resources constraints. First, in this thesis, we provide improved upper bounds for many hard instances from the literature by using methods based on Stochastic Local Search (SLS). As the most contribution part of this work, we propose a cutting plane algorithm to separate five different cut families, as well as a new preprocessing routine to strengthen resource-related constraints. New lifted versions of the well-known precedence and cover inequalities are employed. At each iteration, a dense conict graph is built considering feasibility and optimality conditions to separate cliques, odd-holes and strengthened Chvátal-Gomory cuts. The proposed strategies considerably improve the linear relaxation bounds, allowing a state-of-the-art mixed-integer linear programming solver to nd provably optimal solutions for 754 previously open instances of different variants of the RCPSPs, which was not possible using the original linear programming formulations.
Description
Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.
Keywords
Financiamento de projetos, Orçamento-programa, Programação linear
Citation
ARAUJO, Janniele Aparecida Soares. Mixed-integer linear programming based approaches for the resource constrained project scheduling problem. 2019. 96 f. Tese (Doutorado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2019.