Mixed-integer linear programming based approaches for the resource constrained project scheduling problem.
dc.contributor.advisor | Santos, Haroldo Gambini | pt_BR |
dc.contributor.author | Araujo, Janniele Aparecida Soares | |
dc.contributor.referee | Santos, Haroldo Gambini | pt_BR |
dc.contributor.referee | Barboza, Eduardo Uchoa | pt_BR |
dc.contributor.referee | Souza, Marcone Jamilson Freitas | pt_BR |
dc.contributor.referee | Jena, Sanjay Dominik | pt_BR |
dc.contributor.referee | Toffolo, Túlio Ângelo Machado | pt_BR |
dc.date.accessioned | 2020-01-09T16:42:21Z | |
dc.date.available | 2020-01-09T16:42:21Z | |
dc.date.issued | 2019 | |
dc.description | Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. | pt_BR |
dc.description.abstract | Resource Constrained Project Scheduling Problems (RCPSPs) without preemption are well-known NP-hard combinatorial optimization problems. A feasible RCPSP solution consists of a time-ordered schedule of jobs with corresponding execution modes, respecting precedence and resources constraints. First, in this thesis, we provide improved upper bounds for many hard instances from the literature by using methods based on Stochastic Local Search (SLS). As the most contribution part of this work, we propose a cutting plane algorithm to separate five different cut families, as well as a new preprocessing routine to strengthen resource-related constraints. New lifted versions of the well-known precedence and cover inequalities are employed. At each iteration, a dense conict graph is built considering feasibility and optimality conditions to separate cliques, odd-holes and strengthened Chvátal-Gomory cuts. The proposed strategies considerably improve the linear relaxation bounds, allowing a state-of-the-art mixed-integer linear programming solver to nd provably optimal solutions for 754 previously open instances of different variants of the RCPSPs, which was not possible using the original linear programming formulations. | pt_BR |
dc.identifier.citation | ARAUJO, Janniele Aparecida Soares. Mixed-integer linear programming based approaches for the resource constrained project scheduling problem. 2019. 96 f. Tese (Doutorado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2019. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufop.br/handle/123456789/11879 | |
dc.language.iso | en_US | pt_BR |
dc.rights | aberto | pt_BR |
dc.rights.license | Autorização concedida ao Repositório Institucional da UFOP pelo(a) autor(a) em 20/12/2019 com as seguintes condições: disponível sob Licença Creative Commons 4.0 que permite copiar, distribuir e transmitir o trabalho desde que sejam citados o autor e o licenciante. Não permite o uso para fins comerciais nem a adaptação. | pt_BR |
dc.subject | Financiamento de projetos | pt_BR |
dc.subject | Orçamento-programa | pt_BR |
dc.subject | Programação linear | pt_BR |
dc.title | Mixed-integer linear programming based approaches for the resource constrained project scheduling problem. | pt_BR |
dc.type | Tese | pt_BR |