A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence.
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Xanthomonas arboricola pv. juglandis (Xaj) is the most significant aboveground walnut bacterial pathogen. Disease
management uses copper-based pesticides which induce pathogen resistance. We examined the genetic reper-
toire associated with adaptation and virulence evolution in Xaj. Comparative genomics of 32 Xaj strains reveal
the possible acquisition and propagation of virulence factors via insertion sequences (IS). Fine-scale annotation
revealed a Tn3 transposon (TnXaj417) encoding copper resistance genes acquired by horizontal gene transfer and
associated with adaptation and tolerance to metal-based pesticides commonly used to manage pathogens in
orchard ecosystems. Phylogenomic analysis reveals IS involvement in acquisition and diversification of type III
effector proteins ranging from two to eight in non-pathogenic strains, 16 to 20 in pathogenic strains, besides six
other putative effectors with a reduced identity degree found mostly among pathogenic strains. Yersiniabactin,
xopK, xopAI, and antibiotic resistance genes are also located near ISs or inside genomic islands and structures
resembling composite transposons.
Description
Keywords
Copper resistance, Genome evolution, Replicative transposition, Lateral gene transfer, Mobile genetic elements
Citation
ASSIS, R. de A. B. et al. A comparative genomic analysis of Xanthomonas arboricola pv. juglandis strains reveal hallmarks of mobile genetic elements in the adaptation and accelerated evolution of virulence. Genomics, v. 113, p. 2513-2525, 2021. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0888754321002196>. Acesso em: 11 out. 2022.