Browsing by Author "Rodrigues, Vanderlei"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
Item Characterization and mRNA expression analysis of PI31, an endogenous proteasome inhibitor from Schistosoma mansoni.(2010) Machado, Carla Botelho; Cabral, Fernanda Janku; Soares, Cláudia Sossai; Moreira, Érika Bueno de Carvalho; Morais, Enyara Rezende; Magalhães, Lizandra Guidi; Gomes, Matheus de Souza; Cota, Renata Guerra de Sá; Rosa, José César; Ruller, R.; Ward, R. J.; Rodrigues, VanderleiThe proline-rich inhibitor of 31 kDa (PI31) is highly conserved through metazoan evolution, and its activity in the proteasome inhibition is well-established although the precise mechanism of inhibition is unclear. The coding DNA sequence of Schistosoma mansoni PI31 (SmPI31) was cloned, and the recombinant protein was expressed in bacterial system. The correct amino acid sequence was confirmed by mass spectrometry and circular dichroism suggests that SmPI31 contains both α-helix and non-structured regions. Inhibition assays, using the SucLeu-Leu-Val-Tyr-4-MCA substrate for proteasome degradation, showed that the S. mansoni proteasome may be regulated by the inhibitory activity of SmPI31. A gene expression assay using qRT-PCR at various stages during the S. mansoni life cycle has shown that SmPI31 transcripts are expressed in all studied stages, suggesting that PI31 plays an important role during the developmental processes of the parasite. In this study first evidence is presented that PI31 has a conserved structure and plays a role as proteasome inhibitor in adult worms and it is expressed through life cycle.Item Detection of Schistosoma mansoni long non-coding RNAs in the infected C57BL/6 mouse liver.(2021) Mota, Ester Alves; Oliveira, Victor Fernandes de; Patrocínio, Andressa Barban do; Rodrigues, Vanderlei; Cota, Renata Guerra de SáLong non-coding RNAs (lncRNAs) perform several types of regulatory functions and have been recently explored in the genus Schistosoma. Although sequencing and bioinformatics approaches have demonstrated the presence of hundreds of lncRNAs and microRNAs (miRNAs) in this genus, information regarding their abundance, characteristics, and potential functions linked to Schistosoma mansoni biology and parasite-host interaction is limited. Our objectives in the present study were to verify whether 15 previously identified S. mansoni lncRNAs are detectable in the host liver. In addition, we assess whether these lncRNAs are present in the S. mansoni infective form and the stages inside the definitive host. The detection of these 15 S. mansoni lncRNAs and a long terminal repeat (LTR) retrotransposon Saci 4 was performed in the eggs, cercariae, and 3.5-h schistosomula. All lncRNAs were found to be expressed in these stages; some of the lncRNAs were found in the livers of the infected C57BL/6 mice. In conclusion, S. mansoni lncRNAs were detected in host livers and quantified. Furthermore, many of the lncRNAs analyzed showed differential expression in the larval stages, indicating that they play a stage-specific regulatory role.Item Deubiquitinating enzymes as possible drug targets for schistosomiasis.(2021) Patrocínio, Andressa Barban do; Cabral, Fernanda Janku; Paiva, Thales Henrique de; Magalhães, Lizandra Guidi; Paula, Lucas Antônio de Lima; Brigato, Olinda Mara; Cota, Renata Guerra de Sá; Rodrigues, VanderleiDeubiquitinating enzymes (DUBs) are conserved in Schistosoma mansoni and may be linked to the 26S proteasome. Previous results from our group showed that b-AP15, an inhibitor of the 26S proteasome DUBs UCHL5 and USP14 induced structural and gene expression changes in mature S. mansoni pairs. This work suggests the use of the nonselective DUB inhibitor PR-619 to verify whether these enzymes are potential target proteins for new drug development. Our approach is based on previous studies with DUB inhibitors in mammalian cells that have shown that these enzymes are associated with apoptosis, autophagy and the transforming growth factor beta (TGF-β) signaling pathway. PR-619 inhibited oviposition in parasite pairs in vitro, leading to mitochondrial changes, autophagic body formation, and changes in expression of SmSmad2 and SmUSP9x, which are genes linked to the TGF-β pathway that are responsible for parasite oviposition and SmUCHL5 and SmRpn11 DUB maintenance. Taken together, these results indicate that DUBs may be used as targets for the development of new drugs against schistosomiasis.Item Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervose system.(2003) Festuccia, William Tadeu Lara; Cota, Renata Guerra de Sá; Kawashita, Nair Honda; Garófalo, Maria Antonieta Rissato; Evangelista, Elísio Alberto; Rodrigues, Vanderlei; Kettelhut, Isis do Carmo; Migliorini, Renato HéliosExpression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. Am J Physiol Regul Integr Comp Physiol 284: R1536–R1541, 2003; 10.1152/ajpregu.00764.2002.—The effect of cold exposure (4°C) or prolonged norepinephrine infusion on the activity and mRNA levels of glycerokinase (GyK) was investigated in rat interscapular brown adipose tissue (BAT). Cold exposure for 12 and 24 h induced increases of 30% and 100%, respectively, in the activity of BAT GyK, which was paralleled by twofold and fourfold increase in enzyme mRNA levels. BAT hemidenervation resulted in reductions of 50% and 30% in GyK activity and in mRNA levels, respectively, in denervated pads from rats kept at 25°C, and suppressed in these pads the cold-induced increases in both GyK activity and mRNA levels. The increase in GyK activity induced by cold exposure was not affected by phenoxybenzamine, but was markedly inhibited by previous administration of propranolol or actinomycin D. BAT GyK activity did not change significantly after 6 h of continuous subcutaneous infusion of norepinephrine (20 g/h), but increased twofold and fourfold after 12 and 24 h, with no further increase after 72 h of infusion. Norepinephrine infusion also activated mRNA production, but the effect was comparatively smaller than that on enzyme activity. -Adrenergic agonists also stimulated GyK activity with the following relative magnitude of response: CL316243 ( 3) isoproterenol (non-selective) dobutamine ( 1). In vitro rates of incorporation of glycerol into glyceride-glycerol were increased in BAT from rats exposed to cold. The data suggest that in conditions of a sustained increase in BAT sympathetic flow there is a stimulation of GyK gene expression at the pretranslational level, with increased enzyme activity, mediated by -adrenoreceptors, mainly 3.Item Inhibition of 19S proteasome deubiquitinating activity in Schistosoma mansoni affects viability, oviposition, and structural changes.(2020) Patrocínio, Andressa Barban do; Cabral, Fernanda Janku; Bitencourt, André Luiz Brandão; Brigato, Olinda Mara; Magalhães, Lizandra Guidi; Paula, Lucas Antônio de Lima; Moreira, Larissa Franco; Cota, Renata Guerra de Sá; Rodrigues, VanderleiThe proteasome is the key player in the cellular protein degradation machinery and is pivotal for protein homeostasis and Schistosoma mansoni (S. mansoni) survival. Our group study provides insights into proteasome inhibitors and reveals that selective schistosomiasis agents represent an interesting branch of proteasome research linked to the development of new drugs for this neglected disease. Here, we explored the phenotypic response of S. mansoni to b-AP15, a bis-benzylidine piperidone that inhibits 26S proteasome deubiquitinases (DUBs), ubiquitin-specific protease 14 (USP14), and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5). b-AP15 induces a modest decrease in egg production in vitro and reduces viability, leading to the death of parasite couples. This inhibitor also induces a twofold increase in the accumulation of polyubiquitinated proteins in S. mansoni adult worms and causes tegument changes such as disintegration, wrinkling, and bubble formation, both throughout the length of the parasite and in the oral sucker. b-AP15 alters the cell organelles of adult S. mansoni worms, and we specifically observed mitochondrial alterations, which are suggestive of proteotoxic stress leading to autophagy. Taken together, these results indicate that the deubiquitinase function of the proteasome is essential for the parasite and support the hypothesis that the proteasome constitutes an interesting drug target for the treatment of schistosomiasis.Item Investigation on the 19S ATPase proteasome subunits (Rpt1 6) conservation and their differential gene expression in Schistosoma mansoni.(2013) Pereira Junior, Olavo dos Santos; Pereira, Roberta Verciano; Silva, Camila Siqueira; Borges, William de Castro; Cota, Renata Guerra de Sá; Cabral, Fernanda Janku; Silva, Sérgio Henrique da; Soares, Cláudia Sossai; Morais, Enyara Rezende; Moreira, Érika Bueno de Carvalho; Magalhães, Lizandra Guidi; Paula, Fabiana Martins de; Rodrigues, VanderleiThe ubiquitin-proteasome system is responsible for degradation of the majority of intracellular proteins in eukaryotic cells. The 26S proteasome proteolytic complex is composed of a 20S core particle responsible for protein degradation and the 19S lid which plays a role in the recognition of polyubiquitinated substrates. The 19S regulatory particle (Rps) is composed of ATPase (Rpt) and non-ATPase (Rpn) subunits. In this study, we analyzed the expression profile of 19S Rpt subunits in the larvae and adult stage of the Schistosoma mansoni life cycle. Conventional reverse transcriptase polymerase chain reaction (RT-PCR) revealed that the majority of the 19S Rpt subunits amplified at the expected molecular masses for various investigated stages. In addition, SmRpt1, SmRpt2, and SmRpt6 transcript levels were increased in 3 h-cultured schistosomula and reasonably maintained until 5 h in culture, as revealed by qRT-PCR. Phylogenetic analysis of 19S Rpt subunits showed high structural conservation in comparison to other Rpt orthologues. The mRNA expression profile of 19S Rpt subunits did not correlate with 26S proteasome proteolytic activity as judged by a 14C-casein-degrading assay, in the early cultured schistosomula. Taken together, these results revealed a differential expression profile for 19S Rpt subunits whose transcript levels could not be directly associated to 26S proteasome activity.Item Molecular characterization of SUMO E2 conjugation enzyme : differential expression profile in Schistosoma mansoni.(2011) Pereira, Roberta Verciano; Cabral, Fernanda Janku; Gomes, Matheus de Souza; Babá, Élio Hideo; Passos, Liana Konovaloff Jannotti; Carvalho, Omar; Rodrigues, Vanderlei; Afonso, Robson José de Cássia Franco; Borges, William de Castro; Cota, Renata Guerra de SáSUMO-dependent post-translational modification is implicated in a variety of cellular functions including gene expression regulation, nuclear sub-localization, and signal transduction. Conjugation of SUMO to other proteins occurs in a similar process to ubiquitination, which involves three classes of enzymes: an E1 activating, an E2 conjugating, and an E3 target-specific ligase. Ubc9 is the unique SUMO E2 enzyme known to conjugate SUMO to target substrates. Here, we present the molecular characterization of this enzyme and demonstrate its expression profile during the S. mansoni life cycle. We have used bioinformatic approaches to identify the SUMO-conjugating enzyme, the SmUbc9-like protein, in the Schistosoma mansoni databases. Quantitative RT-PCR was employed to measure the transcript levels of SUMO E2 in cercariae, adult worms, and in vitro cultivated schistosomula. Furthermore, recombinant SmUbc9 was expressed using the Gateway system, and antibodies raised in rats were used to measure SmUbc9 protein levels in S. mansoni stages by Western blotting. Our data revealed upregulation of the SmUbc9 transcript in early schistosomula followed by a marked differential gene expression in the other analyzed stages. The protein levels were maintained fairly constant suggesting a post-transcriptional regulation of the SmUbc9 mRNA. Our results show for the first time that S. mansoni employs a functional SUMO E2 enzyme, for the conjugation of the SUMO proteins to its target substrates.Item Molecular cloning, sequencing, and expression analysis of presenilin cDNA from Schistosoma mansoni.(2009) Magalhães, Lizandra Guidi; Borges, William de Castro; Gomes, Matheus de Souza; Cota, Renata Guerra de Sá; Rodrigues, VanderleiPresenilins (PS) are integral membrane proteins involved, among other functions, in regulated intramembrane proteolysis. In this study, we report the identification and characterization of a complementary DNA from Schistosoma mansoni exhibiting a significant homology to human and nonvertebrate presinilins. S. mansoni contained a 1,485 bp open reading frame encoding a predicted protein of 494 amino acids. Alignment of predicted amino acid sequence of S. mansoni with PS (SmPS) from other species revealed up to 40% similarity shared among the investigated organisms. In addition, phylogenetic analyses demonstrated SmPS being closely related to its orthologues found in Schistosoma japonicum and Caenorhabditis elegans. Expression analysis of SmPS using quantitative real-time PCR revealed that the transcript is up-regulated in the egg stage. We hypothesize that the high level of SmPS in the S. mansoni embryo correlates to an important role during cellular signaling associated to larval development. To our knowledge, this study represents the first attempt to investigate the existence and abundance of PS from a helminth parasite.Item Preliminary analysis of miRNA pathway in Schistosoma mansoni.(2009) Gomes, Matheus de Souza; Cabral, Fernanda Janku; Passos, Liana Konovaloff Jannotti; Carvalho, Omar; Rodrigues, Vanderlei; Babá, Élio Hideo; Cota, Renata Guerra de SáRNA silencing refers to a series of nuclear and cytoplasmatic processes involved in the post-transcriptional regulation of gene expression or post-transcriptional gene silencing (PTGS), either by sequence-specific mRNA degradation or by translational arrest. The best characterized small RNAs are microRNAs (miRNAs), which predominantly perform gene silencing through post-transcriptional mechanisms. In this work we used bioinformatic approaches to identify the parasitic trematode Schistosoma mansoni sequences that are similar to enzymes involved in the post-transcriptional gene silencing mediated by miRNA pathway.We used amino acid sequences of well-known proteins involved in the miRNA pathway against S. mansoni genome and transcriptome databases identifying a total of 13 putative proteins in the parasite. In addition, the transcript levels of SmDicer1 and SmAgo2/3/4 were identified by qRT-PCR using cercariae, adult worms, eggs and in vitro cultivated schistosomula. Our results showed that the SmDicer1 and SmAgo2/3/4 are differentially expressed during schistosomula development, suggesting that the miRNA pathway is regulated at the transcript level and therefore may control gene expression during the life cycle of S. mansoni.Item Schistosoma mansoni : functional proteasomes are required for development in the vertebrate host.(2005) Cota, Renata Guerra de Sá; Borges, William de Castro; Evangelista, Elísio Alberto; Kettelhut, Isis do Carmo; Rodrigues, VanderleiProteasomes are multi-subunit proteases involved in several mechanisms and thought to contribute to the regulation of cellular homeostasis. Here, we report for the Wrst time biochemical evidence for the existence of a ubiquitin–proteasome proteolytic pathway in this parasite. Proteasomes from both cercariae and adult worms exhibited a high preference for hydrolysis of the substrate Suc- LLVY-AMC, although in the cercariae extract the rate of hydrolysis was 50% lower when compared to adult worms extracts. The same diVerence in proteasome activities was observed when endogenous proteins were broken down in the presence of ATP and ubiquitin. Additionally, accumulation of high molecular weight conjugates was observed when cercariae were pre-incubated with proteasome inhibitors. Finally, we present evidence that during experimental schistosomiasis, proteasome inhibitors were able to reduce the number of lung stage schistosomula, reduce the worm burden and consequently decrease the egg output in infected mice.Item Schistosoma mansoni encodes SMT3B and SMT3C molecules responsible for post-translational modification of cellular proteins.(2008) Cabral, Fernanda Janku; Pereira Junior, Olavo dos Santos; Silva, Camila Siqueira; Cota, Renata Guerra de Sá; Rodrigues, VanderleiThe sumoylation pathway is a post-translational modification of nuclear proteins widespread among several organisms. SMT3C is the main protein involved in this process and it is covalently conjugated to a diverse assortment of nuclear protein targets. To date, 3 SUMO paralogues (SMT3C, A/B) have been characterized in mammals and plants. In this work we characterized two SUMO related genes, named SMT3B and SMT3C throughout Schistosoma mansoni life cycle. The SmSMTB/C encodes for proteins sharing significant amino acid homology with SMT3. Phylogenetical analyses revealed that both SmSMT3B/C are distinct proteins. Additionally, SmSMT3B and C are expressed in cercariae, adult worms, eggs and schistosomula however SmSMT3C gene showed an expression level 7 to 9 fold higher than SmSMT3B in eggs, schistosomula and adult worms. The comparison between the SmSMT3C genomic and cDNA sequences established that the encoding sequence is interrupted by 3 introns of 70, 37 and 36 bp. Western Blot has shown SMT3 conjugates are present in nuclear and total protein fractions of adults and cercariae. Therefore our results suggest a functional sumoylation pathway, and the presence of two paralogues also suggests the specificity of substrates for SMT3 in S. mansoni.Item The 20S proteasome of Schistosoma mansoni : a proteomic analysis.(2007) Borges, William de Castro; Cartwright, Jared; Ashton, Peter D.; Braschi, Simon; Cota, Renata Guerra de Sá; Rodrigues, Vanderlei; Wilson, R. Alan; Curwen, Rachel S.Proteasomes are molecular machines found in virtually all cells that provide one of the mechanisms for protein turnover. We have analysed the 20S proteasome of Schistosoma mansoni, the first multimeric complex isolated from this helminth parasite. Three chromatographic steps were employed to yield a highly homogeneous preparation. 2-DE of the purified complex revealed 58 spots, of which 46 could be assigned either an a or a b proteasome signature by MS. Most of the 14 transcripts (7a and 7b) encoded by the parasite genome were represented by multiple spots and we suggest that this diversity is due to PTMs of subunits. For most of the isoforms, variations in pI predominated although alterations in mass were also observed. 2-DE separations of extracts from infective cercariae and blood-dwelling adult worms probed by Western blotting, using a human anti-a subunit antibody, revealed different patterns of reactivity, most probably in a3 and a6 subunits, on the basis of sequence conservation. This difference was rapidly lost following transformation of the cercaria to the skin schistosomulum stage, suggesting that changes in the proteasome structure, likely caused by the introduction of a new set of PTMs, precede remodelling of the parasite body prior to intravascular migration.Item The ubiquitin proteasome system in Strongyloididae. Biochemical evidence for developmentally regulated proteolysis in Strongyloides venezuelensis.(2009) Paula, Fabiana Martins de; Borges, William de Castro; Pereira Junior, Olavo dos Santos; Gomes, Matheus de Souza; Ueta, Marlene Tiduko; Rodrigues, VanderleiNematode parasites from the genus Strongyloides spp. are important pathogens of the intestinal mucosa of animals and humans. Their complex life cycles involve alternating developmental adaptations between larvae stages and the adult parthenogenetic female. Here, we report, primarily through homology-based searching, the existence of the major components of the ubiquitin– proteasome system in this genus, using the available EST data from S. ratti, S. stercoralis, and Parastrongyloides trichosuri. In this study, S. venezuelensis was used as our model organism for detection of proteasome activity and ubiquitinated substrates in cytosolic preparations from the L3 larvae and the adult female. Marked differences in proteasome capabilities were found when these two stages were compared. A preference for degradation of chymotryptic synthetic peptides was found in both stages with the adult exhibiting a higher rate of hydrolysis compared to the larvae. Due to the high evolutionary conservation of proteasome alpha subunits, an anti-human proteasome antibody was able to recognize proteasome subunits in these preparations by Western blotting, supporting the proposal that the activity of the ubiqutin–proteasome system is developmentally regulated in this nematode.Item Uncovering Notch pathway in the parasitic flatworm Schistosoma mansoni.(2016) Magalhães, Lizandra Guidi; Morais, Enyara Rezende; Machado, Carla Botelho; Gomes, Matheus de Souza; Cabral, Fernanda Janku; Souza, Júlia Medeiros; Soares, Cláudia Sossai; Cota, Renata Guerra de Sá; Borges, William de Castro; Rodrigues, VanderleiSeveral signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor β, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]- S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated withDAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.Item Up-regulation of SUMO E3 ligases during lung schistosomula and adult worm stages.(2014) Pereira, Roberta Verciano; Gomes, Matheus de Souza; Cabral, Fernanda Janku; Passos, Liana Konovaloff Jannotti; Rodrigues, Vanderlei; Borges, William de Castro; Cota, Renata Guerra de SáSmall ubiquitin-like modifier (SUMO) conjugation of proteins occurs through a concert action of enzymes using a similar ubiquitination mechanism. After a C-terminal peptide is cleaved from the SUMO precursor by a protease to reveal a di-glycine motif, SUMO is activated by an E1 enzyme (Aos1/Uba2) and conjugated to target proteins by the sole E2 enzyme (Ubc9) guided to the appropriate substrates by the SUMO E3 ligase. Previous reports from our group showed that Schistosoma mansoni has two paralogs of SUMO: one E2 conjugation Ubc9 and two SUMO-specific proteases (SENPs). The differential gene expression profile observed for SUMO pathway genes throughout the S. mansoni life cycle attests for the distinct patterns of SUMO conjugates observed during parasite development particularly during the cercariae to schistosomula transition. To continue this investigation, we here analysed the repertoire of SUMO E3 ligases and their expression profiles during cercariae/ schistosomula transition. In silico analysis through S. mansoni databases showed two conserved SUMO E3 ligases: protein inhibitor of activated STAT (PIAS) and Ran-binding protein 2 (RanBP2). Furthermore, expression levels of the SUMO E3 ligases were measured by qRT-PCR using total RNA from cercariae, adult worms and mechanically transformed schistosomula. Our data showed an up-regulation of expression in lung schistosomula and adult worm stages. In conclusion, the differential expression of SmPIAS and SmRanBP2 during schistosomula development was similar to the expression levels of all genes related to SUMO conjugation, thereby suggesting that the control of protein activity, localisation or stability during cercariae to schistosomula transition is SUMO-dependent.